高级检索
Preparation of well-distributed titania nanopillar arrays on Ti6Al4V surface by induction heating for enhancing osteogenic differentiation of stem cells

    作者

    Li, NB;Sun, SJ;Bai, HY;Xiao, GY;Xu, WH;Zhao, JH;Chen, X;Lu, YP;Zhang, YL

    作者单位

    [Li, Ning-Bo; Xiao, Gui-Yong; Xu, Wen-Hua; Zhao, Jun-Han; Chen, Xin; Lu, Yu-Peng] Shandong Univ, Key Lab Liquid Solid Struct Evolut & Proc Mat, Minist Educ, Jinan 250061, Shandong, Peoples R China.;-;[Li, Ning-Bo; Xiao, Gui-Yong; Xu, Wen-Hua; Zhao, Jun-Han; Chen, Xin; Lu, Yu-Peng] Shandong Univ, Suzhou Inst, Suzhou 215123, Peoples R China.;-;[Li, Ning-Bo; Xiao, Gui-Yong; Xu, Wen-Hua; Zhao, Jun-Han; Chen, Xin; Lu, Yu-Peng] Shandong Univ, Sch Mat Sci & Engn, Jinan 250061, Shandong, Peoples R China.;-;[Sun, Sheng-Jun] Shandong Univ, Coll Stomatol, Shandong Prov Key Lab Oral Biomed, Jinan 250021, Shandong, Peoples R China.;-;[Bai, Han-Ying] Columbia Univ, Med Ctr, Ctr Craniofacial Regenerat, Sch Dent Med, New York, NY 10032 USA.;-;[Zhang, Yi-Lin] Shandong Univ, Shandong Prov Hosp, Dept Stomatol, Jinan 250021, Shandong, Peoples R China.

    摘要

    Great effort has recently been devoted to the preparation of nanoscale surfaces on titanium-based implants to achieve clinically fast osteoinduction and osseointegration, which relies on the unique characteristics of the nanostructure. In this work, we used induction heating treatment (IHT) as a rapid oxidation method to fabricate a porous nanoscale oxide layer on the Ti6Al4V surface for better medical application. Well-distributed vertical nanopillars were yielded by IHT for 20-35 s on the alloy surface. The composition of the oxides contained rutile/anatase TiO2 and a small amount of Al2O3 between the TiO2 grain boundaries (GBs). This technology resulted in a reduction and subsequent increase of surface roughness of 26-32 nm when upregulating the heating time, followed by the successive enhancement of the thickness, wettability and adhesion strength of the oxidation layer to the matrix. The surface hardness also distinctly rose to 554 HV in the IHT-35 s group compared with the 350 HV of bare Ti6Al4V. The massive small-angle GBs in the bare alloy promoted the formation of nanosized oxide crystallites. The grain refinement and deformation texture reduction further improved the mechanical properties of the matrix after IHT. Moreover, in vitro experiments on a mesenchymal stem cell (BMSC) culture derived from human bone marrow for 1-7 days indicated that the nanoscale layers did not cause cytotoxicity, and facilitated cell differentiation in osteoblasts by enhancing the gene and osteogenesis-related protein expressions after 1-3 weeks of culturing. The increase of the IHT time slightly advanced the BMSC proliferation and differentiation, especially during long-term culture. Our findings provide strong evidence that IHT oxidation technology is a novel nanosurface modification technology, which is potentially promising for further clinical development.

    关键词

    SIMULATED BODY-FLUID; THERMAL-OXIDATION; OSTEOBLAST DIFFERENTIATION; BIOMEDICAL APPLICATIONS; PROTEIN ADSORPTION; SIGNALING PATHWAY; SELF-RENEWAL; COATINGS; ALLOY; TIO2
基本信息

  • 所属机构:

    归属医师: 张益琳

    UT:000418675800001

    刊名:NANOTECHNOLOGY

    年,卷(期):2018年29卷4期

    DOI:10.1088/1361-6528/aa9daa

    附件:

    收录:   SCIE