高级检索
KMT2D inhibits the growth and metastasis of bladder Cancer cells by maintaining the tumor suppressor genes

    作者

    Sun, P;Wu, T;Sun, XL;Cui, ZL;Zhang, HY;Xia, QH;Zhang, D

    作者单位

    [Sun, Peng; Sun, Xiaoliang; Cui, Zilian; Zhang, Haiyang; Xia, Qinghua; Zhang, Dong] Shandong Univ, Shandong Prov Hosp, Dept Urol, 324 Jingwuweiqi Rd, Jinan 250021, Shandong, Peoples R China.;-;[Wu, Tong] Shandong Prov Western Hosp, Dept Chinese Med, Jinan, Shandong, Peoples R China.

    摘要

    KMT2D, a kind of histone H3 lysine 4 (H3K4) methyltransferase, its abnormal expression confirmed to be associated with diverse tumors, but is lack of defined role in bladder cancer (BC). KMT2D mutation was analyzed using several databases. Immunohistochemistry and clinicopathological analysis of KMT2D in 51 paired of BC tissues and corresponding normal tissues were used to evaluate the relationship between KMT2D and BC. The effects of silencing or over-expressing KMT2D on HTB-9 and T24 cell viability, migration and invasion were performed using MTT, wound scratch and Transwell, respectively. Also, bladder cancer mouse model was established by hypodermic injection of the BC cells. Associated expressions of methylation genes, oncogenes and tumor suppressors were assessed by western blot and quantitative real-time PCR. KMT2D was frequent mutation in various tumors, including BC. It was negative expression in BC tissues and cells, also implicated with tumor stages and lymph node metastasis. In silencing KMT2D HTB-9 and T24 cells, cell viability, migration and invasion were notably promoted. Meanwhile, knockdown of KMT2D benefited to solid tumor formation in vivo. However, over-expressing KMT2D represented contrary results. Especially, KMT2D over-expression induced the activity of H3K4 monomethylation (me1), and effectively enhanced PTEN and p53 expressions as well as repressed STAG2 expression. Meanwhile, KMT2D had no obvious effect on Survivin. This work suggested an anti-tumor role for KMT2D in vitro and in vivo, as well as provided a possible tumor inhibition mechanism in which KMT2D enhanced H3K4me1 activity to support the expressions of tumor suppressors.

    关键词

    MUTATIONAL LANDSCAPE; HISTONE MODIFICATION; SOMATIC MUTATIONS; H3K4 METHYLATION; FGFR3; PROGRESSION; LYMPHOMA; PROMOTES; PIK3CA; PROLIFERATION
基本信息

  • 所属机构:泌尿微创外三科

    归属医师: 孙晓亮 张海洋 夏庆华 孙鹏 张栋 崔子连

    PMID:31100540

    UT:000470664600045

    刊名:BIOMEDICINE & PHARMACOTHERAPY

    年,卷(期):2019年115卷

    DOI:10.1016/j.biopha.2019.108924

    附件: other

    收录:   SCIE