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Abstract: Diabetic retinopathy (DR), the leading cause of blindness in working-age adults, is one of
the most common complications of diabetes mellitus (DM) featured by metabolic disorders. With
the global prevalence of diabetes, the incidence of DR is expected to increase. Prompt detection
and the targeting of anti-oxidative stress intervention could effectively reduce visual impairment
caused by DR. However, the diagnosis and treatment of DR is often delayed due to the absence
of obvious signs of retina imaging. Research progress supports that metabolomics is a powerful
tool to discover potential diagnostic biomarkers and therapeutic targets for the causes of oxidative
stress through profiling metabolites in diseases, which provides great opportunities for DR with
metabolic heterogeneity. Thus, this review summarizes the latest advances in metabolomics in DR,
as well as potential diagnostic biomarkers, and predicts molecular targets through the integration
of genome-wide association studies (GWAS) with metabolomics. Metabolomics provides potential
biomarkers, molecular targets and therapeutic strategies for controlling the progress of DR, especially
the interventions at early stages and precise treatments based on individual patient variations.

Keywords: diabetic retinopathy; metabolomics; biomarkers; metabolic pathway; molecular targets

1. Introduction

Diabetic retinopathy (DR) is a major complication of diabetes mellitus (DM), and one of
the leading causes of vision impairment and blindness in working-age adults globally [1–4].
In 2030, the number of adults worldwide with DR is estimated to be 129.84 million, and
the number is projected to increase to 160.50 million in 2045 [5]. The economic burden
increased accordingly.

Although important advances have been made in the diagnosis and treatment of DR
in the past few decades, more effective diagnostic markers and therapeutic strategies are
still lacking. Hemoglobin A1c (HbA1c) for monitoring the levels of glucose is the validated
systemic biomarker of DR [6], while the differences in the level of HbA1c explained
only 6.6% of the alteration in the risk of DR for the entire study cohort in a diabetes
control and complications trial [7,8]. The worsening of DR, including the early-phase
non-proliferative diabetic retinopathy (NPDR) and advanced-phase proliferative diabetic
retinopathy (PDR), is associated with the initiation of effective treatment of glycaemia in
patients with diabetes. Moreover, there are few measures available for early intervention
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in DR beyond regulating hyperglycemia and hypertension, preventing dyslipidemia, and
cessation of tobacco smoking [9]. All the treatments including anti-vascular endothelial
growth factor (anti-VEGF) therapy and laser photocoagulation are focused on the PDR and
carry sight-threatening effects [9–11]. Thus, there is still an urgent need to identify novel
biomarkers and effective therapeutic strategies to screen and treat the progression of DR.

Research progress supports that oxidative stress, caused by the disruption of redox
balance, is closely related to metabolic dysregulation in the retina and is a key contributor
to the pathogenesis of DR [12,13]. Metabolism-based regulation of oxidative stress would
be a potential target for developing promising treatments for DR.

Metabolomics enables the detailed characterization of metabolic phenotypes and
metabolic derangements that underlie diseases. It could afford the discovery of biomarkers
and new therapeutic targets that may be used to either diagnose disease or monitor the
activity of therapeutics [14]. The application of metabolomics in DR has systematically
reflected abnormal metabolic changes by comparing the small molecule composition of
various ocular and blood samples from DR patients, mammals, tissues, and cells [15].
In this manuscript, we aim to review the latest advances in metabolomics of DR and
summarize potential biomarkers and molecular targets for DR by integrating metabolomics
with genome-wide association studies (GWAS).

2. Overview of Metabolomics of DR

In recent years, an increasing number of studies have applied metabolomics in DR. We
retrieved relevant articles by searching PubMed before 28 February 2022, with the following
search method: (“metabolomics” or “lipidomics” or “metabonomics” or “metabolome”
or “metabolic profiling”) AND “diabetic retinopathy”. Thirty-nine original articles were
finally determined and the details of these articles including species, samples, platforms,
and differential metabolites are summarized in Figure 1 and Table 1.
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Figure 1. The applications of metabolomics in diabetic retinopathy. Since 2009, metabolomics studies
of DR using various biological samples have become widely available. After sample collection and
metabolomics detection and analysis, differential metabolites are obtained, which can be applied to
identify biomarkers and explore metabolic targets.
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Table 1. Summary of published studies on metabolomics of diabetic retinopathy.

Species Samples Subjects Platforms Differential Metabolites Study

Plasma

64 DR
25 controls GC–MS

Arachidonic acid, citric acid, glucose, linoleic acid, l-aspartic acid,
methymaleic acid, pyruvic acids, stearic acid, trans-oleic acid,
β-hydroxybutyric acid

Li et al.
(2011) [16]

38 DR
37 controls

HPLC–
MS

↑: cytosine, cytidine, thynidine Xia et al.
(2011) [17]

39 DR
35 NDR

UPLC-
MS ↑: adenosine, inosine, uric acid, xanthine Xia et al.

(2014) [18]

80 DR
80 controls GC-MS

↑: erythritol, gluconic acid, lactose/cellobiose, mannose,
maltose/trehalose, ribose, urea, 1,5-gluconolactone, 2-deoxyribonic
acid, 3,4-dihydroxybutyric acid
↓: 1,5-anhydroglucitol

Chen et al.
(2016) [19]

52 PDR
72 NPDR
59 NDR

UPLC-
MS,
GC-MS

7 amino acids (asparagine, aspartic acid, glutamic acid, glutamine,
glycine, methionine, pyroglutamic acid), 6 organic compounds (citric
acid, lactic acid, phosphoric acid, succinic acid, urea, uric acid), 7
carbohydrates (fructose, glucose, myo-inositol, 1,5-anhydroglucitol,
3 saccharides), 11 LysoPCs

Rhee et al.
(2018) [20]

28 NPDR
22 NDR

LC-MS PGF2α Peng et al.
(2018) [21]

21 PDR
21 NDR

UPLC-
MS

63 metabolites (e.g., acetic acid, cytidine sulfite, dihydrouracil,
fumaric acid, imidazolone, L-serine, malonic acid, sulfate, uridine,
and β-alanine)

Zhu et al.
(2019) [22]

83 DR
90 NDR

LC-MS 126 metabolites (e.g., arginine, acylcarnitine, argininic acid, citrulline,
dehydroxycarnitine, glutamic γ-semialdehyde)

Sumarriva
et al. (2019)
[23]

21 PDR
21 NPDR
32 NDR

UPLC-
MS

Acetylcarnitine, butyryl carnitine, cholic acid, D-glucuronic acid,
D-(+)-pantothenic acid, dehydroisoandrosterone sulfate, pantothenic
acid, pseudouridine, hypoxanthine, N2,N2-dimethylguanosine,
N-acetyltryptophan, leucylleucine, sn-glycero-3-phosphocholine,
propionylcarnitine, inosine, urocanic acid, N-fructosyl isoleucine,
kynurenic acid, phenylacetylglutamine, glutamine, (−)-riboflavin,
3-methylhistidine,

Sun et al.
(2021) [24]

64 PDR
92 NPDR
159 NDR

LC-MS ↑: arginine, citrulline Peters et al.
(2021) [25]

Serum

176 DR
329 NDR

LC-MS ↑: asymmetric dimethylarginine (ADMA), L-arginine, symmetric
dimethylarginine (SDMA)

Abhary
et al. (2009)
[26]

689 DR
216 controls

GC-MS,
LC-MS 12-hydroxyeicosatetraenoic acid (12-HETE) and 2-piperidone Xuan et al.

(2020) [27]
43 DR
44 controls

UHPLC–
MS

↑: 13 lipid (sub)classes (Cers, CerG1s, ChEs, DGs, FAs, LPCs, LPEs,
LPC-Os, LPE-ps, PCs, PC-Os, PE-ps, SMs)

Xuan et al.
(2020) [28]

51 PDR
123 NPDR 143
NDR

LC–MS
DR vs. NDR: 62 metabolites
PDR vs. NDR: 53 metabolites
NPDR vs. NDR: 30 metabolites
PDR vs. NPDR: 8 metabolites

Yun et al.
(2020) [29]

69 DR
69 NDR

UPLC-
MS

↑: nicotinuric acid, o-cresol, ornithine, phenylacetylglutamine,
p-cresol
↓: alpha-linolenic acid, arachidonic acid, cis-docosahexaenoic acid,
gamma-linolenic acid, linolelaidic acid, linoleic acid, palmitoleic acid,
cis-7-hexadecenoic acid, hexadecanoic acid, elaidic acid

Zuo et al.
(2021) [30]

123 DR
116 NDR

Metabolon
Discov-
eryHD4

Glycoursodeoxycholate, tryptophan, xanthine,
phenylacetylglutamine, X-23997, X-13729, 1-palmitoyl-GPA (16:0),
and 5-methylthioadenosine (MTA)

Yousri et al.
(2022) [31]

Erythrocyte 70 DR
14 controls LC-MS ↓: arachidonic acid, docosahexaenoic acid, N-6 PUFAs, N-3 PUFAs

Koehrer
et al. (2014)
[32]

Stool
45 PDR
90 NDR

UPLC-
MS

Alantolactone, adenine, corosolic acid, desogestrel,
D-erythro-sphinganine, HETE, leukotriene

Ye et al.
(2021) [33]

Human

21 PDR
14 NDR

UPLC-
MS

↑: betonicin, butylparaben, traumatic acid, thromboxane B3,
salicyluric acid, pyro-L-glutaminyl-L-glutamine, harman, flazine,
β-carboline
↓: D-proline, armillaramide, N-gamma-L-glutamyl-D-alanine,
N-acetyl-L-methionine, L-threo-3-phenylserine, (R)-pelletierine

Zhou et al.
(2021) [34]

Retina 20 NPDR
20 NDR

UHPLC-
MS

↓: long-chain ACs (C ≥ 14), longer-chain FAHFAs, DAGs, TAGs,
PCs, Cer

Fort et al.
(2021) [35]

Aqueous
humor

14 DR
13 NDR

NMR ↑: asparagine, DMA, glutamine, histidine, threonine
↓: lactate, succinate, 2HB

Jin et al.
(2019) [36]
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Table 1. Cont.

Species Samples Subjects Platforms Differential Metabolites Study

Aqueous
and vit-
reous
humor

18 PDR
22 controls

LC-MS Cysteine persulfides (CysSSH), cystine, oxidized glutathione
trisulfide (GSSSG)

Kunikata
et al. (2017)
[37]

Vitreous
humor:
28 PDR
22 no diabetes
Aqueous
humor:
23 PDR
25 no diabetes

GC-MS

Vitreous humor:
alanine, alloisoleucine, creatinine, glutamine, leucine, lysine,
ornithine, pyroglutamic acid, pyruvic acid, phenylalanine, uric acid,
threonine, valine, myoinositol, hydroxylamine;
Aqueous humor:
citrulline, D-glucose, isocitric acid, fructose 6-phosphate, L-lactic
acid, threonic acid, myoinositol, D-2,3-dihydroxypropanoic acid

Wang et al.
(2019) [38]

Vitreous
humor

2 PDR
2 PVR
7 no diabetes

NMR unclear Young et al.
(2009) [39]

22 PDR
22 no diabetes

NMR ↑: glucose, lactate
↓: ascorbic acid, galactitol

Barba et al.
(2010) [40]

16 NPDR
15 PDR
16 no diabetes

LC-MS ↑: 5-HETE
↓: 14(15)-EET, 11(12)-EET

Schwartzman
et al. (2010)
[41]

20 PDR
31 no diabetes

HPLC-
MS

↑: allantoin, arginine, citrulline, decanoylcarnitine, proline,
ornithine, octanoylcarnitine, methionine

Paris et al.
(2015) [42]

9 PDR
8 controls

UHPLC-
MS

Ascorbate, carnitine, citrulline, creatinine, dehydroascorbate,
fumarate, glutamine, malate, N-amidino-L-aspartate, sn-glycerol
3-phosphate, proline, pyruvate, tripeptide, ribose, triacanthine,
a-ketoglutarate, 5-oxoproline

Haines et al.
(2018) [43]

31 PDR
13 no diabetes

LC-MS ↑: 5-HETE, 12-HETE, 20-HETE, and 20-COOH-AA Lin et al.
(2020) [44]

35 PDR19 no
diabetes

UHPLC-
MS

↑: allantoin, citrulline, dimethylglycine, glycine, lactate, ornithine,
pyruvate, proline, urate, N-acetylserine, α-ketoglutarate
↓: creatine, succinate

Tomita et al.
(2020) [45]

41 PDR
22 no diabetes

UHPLC-
MS

↑: 21 oxylipins (ARA, DHA, DTA, EPA, 8S-HETrE, 9-OxoODE,
9S-HOTrE, 9S-HODE, 13S-HOTrE, 13-OxoODE, ±12(13)
-EpOME, 12S-HETE, ±12 (13)-DiHOME, ±9(10)-EpOME,
±9(10)-DiHOME, 13S(γ)-HOTrE, 15-deoxy-∆12,14-PGJ2,
15S-HETrE, ±14,15-DiHETrE, ±19,20-EpDPE, and 13,14-dihydro
PGF2α)

Zhao et al.
(2022) [46]

CSF and
plasma

19 DR
14 controls

NMR Alanine, histidine, leucine, pyruvate, tyrosine, and valine
Lin et al.
(2019) [47]

Plasma
and
serum

228 PDR
276 NPDR 141
NDR

GC-MS,
UHPLC-
MS

↑: 2,4-DHBA, 3,4-DHBA, 3,4-DHBA, ribitol
↓: LPC(16:1), PC(32:1), PC(32:2), TG(50:1), TG(50:2),
TG(14:0/16:0/18:1), TG(50:3)

Curovic
et al. (2020)
[48]

Plasma
and
vitreous
humor

Plasma:
88 PDR
51 controlsVit-
reous:
51 PDR
23 controls

UPLC-
MS

(↑ plasma and vitreous): pantetheine,
(24R)-Cholest-5-ene-3-beta,24-diol,
alpha-N-phenylacetyl-L-glutamine;
(↓ plasma and vitreous): pipecolic acid;
(plasma ↑, vitreous ↓): pyroglutamic acid

Wang et al.
(2022) [49]

Plasma,
serum,
and urine

666 DR
2211 NDR NMR Serum/plasma: cholesterol esters, creatinine, tyrosine

Urine: citrate, ethanolamine, formate, hypoxanthine
Quek et al.
(2021) [50]

Rat Urine 6 DR rats
6 controls

UPLC-
MS

↑: cholic acid, kynurenic acid, phenylacetylglycine, p-cresol sulfate,
3-methyldioxyindole, 5-l-glutamyl-taurine
↓: hippuric acid, indoxyl sulfate, p-cresol glucuronide

Wang et al.
(2020) [51]

Mice

Plasma
and retina

10 db/db
mice
10 db/+ mice

LC-MS

133 lipids in plasma
61 lipids in retina
15 lipids in plasma and retina (e.g., DAG 34:2, DAG 38:5, LPC 18:1,
PC 36:4, SM 36:2)

Sas et al.
(2018) [52]

Blood
20 db/db
mice
10 db/m mice

UHPLC-
MS

Arachidonic acid, cortisol, docosahexaenoic acid, lysoPC (18:0),
leukotriene B4, prostaglandin D2, γ-linolenic acid

Ge et al.
(2021) [53]

Zebra-
fish

whole
body

50 pdx1−/−
zebrafish

UHPLC–
MS

↑: glutamate, proline, taurine
↓: ornithine, spermidine, tyrosine

Wiggenhauser
et al. (2021)
[54]

DR, diabetic retinopathy; NDR, no diabetic retinopathy (with diabetes without diabetic retinopathy); PDR, prolif-
erative diabetic retinopathy; NPDR, non-proliferative diabetic retinopathy; PVR, proliferative vitreoretinopathy;
GC-MS, gas chromatography mass spectrometry; LC-MS, liquid chromatography mass spectrometry; HPLC-MS,
high-performance liquid chromatography mass spectrometry; UPLC-LC, ultra-performance liquid chromatogra-
phy mass spectrometry; UHPLC-MS, ultra-high-performance liquid chromatography mass spectrometry; NMR,
nuclear magnetic resonance; CSF, cerebrospinal fluid.
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According to the search results, metabolomics studies of DR using various biolog-
ical samples have become widely available since 2009 (Figure 1). In 2009, Abhary et al.
performed metabolomics profiling of serum from patients with DR and found that the
serum levels of L-arginine, asymmetric dimethylarginine (ADMA), and symmetric dimethy-
larginine (SDMA) were increased in DR patients compared to diabetic patients without
DR [26]. In the same year, Young et al. used metabolomic analysis of human vitreous
humor to differentiate ocular inflammatory diseases including proliferative vitreoretinopa-
thy (PVR) and proliferative diabetic retinopathy, and showed that PVR and PDR could be
separated by the metabolomic analysis of vitreous humor [39]. In 2011, Li et al. analyzed
the metabolome of plasma from patients with DR and identified pyruvic acids, l-aspartic
acid, β-hydroxybutyric acid, methylmaleic acid, citric acid, glucose, stearic acid, trans-oleic
acid, linoleic acid, and arachidonic acid as differential metabolites [16]. Koehrer et al. iden-
tified the metabolic profiles of erythrocytes in DR patients and found that the levels of
docosahexaenoic acid, arachidonic acid, and PUFAs in red blood cells were decreased in
2014 [32]. The metabolic profile of aqueous humor from patients with DR was measured
by Kunikata et al. in 2017 [37]. They identified cysteine persulfides, oxidized glutathione
trisulfide (GSSSG) and cystine were changed in aqueous humor. The next year, Sas et al.
examined the lipidome in plasma and retinal tissues using a mouse model of type 2 diabetes
with microvascular complications and found alterations of 15 lipids in both plasma and
retina tissues [52]. Lin et al. investigated the metabolomic profile of type 2 diabetes in cere-
brospinal fluid and identified that alanine, histidine, leucine, pyruvate, tyrosine, and valine
showed the potential of biomarkers for DR in 2019 [47]. In 2021, Ye and Zhou respectively
collected stool samples from DR patients to analyze the alterations of gut metabolomes
linking DR to the gut metabolome—gut-retina-axis [33,34]. Meanwhile, Quek et al. ana-
lyzed the urinary metabolic profiles of DR patients and found the alterations of citrate,
ethanolamine, formate, and hypoxanthine in urine [50].

From the perspective of species, 35 studies recruited patients with DR for metabolomic
analysis, and the other four studies selected diabetic animal models including mice, rats and
zebrafish. There is a wide selection of biofluids for metabolomic analysis in human studies,
including circulating blood (plasma and serum), eye fluids (vitreous humor and aqueous
humor), and other samples (retinal tissues, stools, urines, red blood cells, and cerebrospinal
fluids). Different types of samples have their own characteristics and advantages. Circulat-
ing blood, due to its easier availability and lower invasiveness, is the most commonly used
sample and can provide a global metabolomic picture [55]. Both serum and plasma can be
obtained from blood, and the main difference between them is the presence or absence of
clotting factors [56]. In terms of impact on metabolite detection, plasma appears to have
better reproducibility, with serum having higher concentrations [57]. Eye fluids including
vitreous humor and aqueous humor can directly reflect intraocular metabolic variations.
However, the vitreous humor, a highly aqueous eye fluid interfacing with the retina, can
only be obtained from subjects with PDR during surgery such as a vitrectomy, which results
in the absence of vitreous samples of NPDR. Tears can be obtained non-invasively and can
also reflect the conditions of the oculi posterior segment [6]. However, to our knowledge,
tear metabolomics have not been applied to the study of DR. In addition, stool samples can
reflect alterations of fecal metabolome and gut microbiota composition, linking DR to the
gut metabolome and microbiota—gut-retina-axis [58].

From the perspective of the metabolomics analysis platform, there are two main tools:
nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry (MS). Thirty-three
studies used MS for metabolite analysis and five studies used NMR. NMR spectroscopy
can be applied to biological samples in various states including liquid, solid, and gaseous
samples [59]. The proton NMR method is the most widely applied NMR technique [60]. A
significant advantage of NMR is the small number of samples required [15]. MS is often
used in tandem with liquid chromatography (LC) or gas chromatography (GC), which are
techniques applied to separate metabolites. In particular, LC-MS has been widely used
in recent years. MS has far better sensitivity than NMR, allowing it to measure a wider
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spectrum of metabolites [15]. Overall, the use of NMR and MS has greatly facilitated the
development of metabolomics.

3. Potential Metabolomics Biomarkers of DR

Metabolomics has been utilized extensively for the identification of single metabolites
and their use as biomarkers [61]. In DR research, 14 studies applied explicit statistical
methods to identify new metabolomics biomarkers and evaluate the performance for
disease diagnosis of biomarker models as listed in Table 2. These studies primarily covered
the human serum, plasma, vitreous humor, aqueous humor, cerebrospinal fluid, and stool.
Human plasma is the most widely used sample for identifying biomarkers of DR, and
various metabolites in human plasma have been reported to have biomarker potentials.
The biomarker potential of cytidine in plasma was reported in two studies [17,22]. The
vitreous humor is another biological sample that has been extensively studied to explore
novel biomarkers for DR. Haines and Wang confirmed the biomarker potential of pyruvate
in the vitreous humor of PDR patients, respectively [38,43]. Predicted biomarkers and their
diagnostic performance are detailed below.

Table 2. Prediction of potential biomarker of DR in human.

Samples Cohorts Biomarkers AUC Sensitivity Specificity Study

Serum

DR VS.
NDR

A biomarker panel (12-HETE and
2-piperidone) 0.946 0.894 0.919 Xuan et al.

(2020) [27]
NPDR
VS. NDR

A biomarker panel (12-HETE and
2-piperidone)

0.958 0.929 0.901 Xuan et al.
(2020) [27]

DR VS.
NDR

A biomarker panel (linoleic acid,
nicotinuric acid, ornithine, and
phenylacetylglutamine)

0.920 0.960 0.780 Zuo et al.
(2021) [30]

Plasma

DR VS.
NDR

Cytidine 0.849 0.737 0.919 Xia et al.
(2011) [17]

DR VS.
NDR

Adenosine 0.913 0.947 1.000 Xia et al.
(2014) [18]

DR VS.
NDR

1,5-Gluconolactone, 2-deoxyribonic
acid,
gluconic acid, and urea

0.71, 0.68, 0.72,
0.69,
respectively

unclear unclear Chen et al.
(2016) [19]

DR VS.
NDR

Ratio of the levels of glutamine to
glutamic acid 0.742 unclear unclear Rhee et al.

(2018) [20]
DR VS.
NDR

A biomarker panel (alanine, histidine,
leucine, pyruvate, tyrosine, and valine) 0.836 unclear unclear Lin et al.

(2019) [47]

PDR VS.
NDR

Fumaric acid, uridine, acetic acid, and
cytidine

0.96, 0.95, 1.00,
0.95,
respectively

unclear unclear Zhu et al.
(2019) [22]

DR VS.
NDR

A risk score (pseudouridine) 0.800 0.976 0.531 Sun et al.
(2021) [24]

PDR VS.
(NPDR
and
NDR)

A risk score (pseudouridine, glutamate,
leucylleucine and N-acetyltryptophan) 0.820 0.762 0.774 Sun et al.

(2021) [24]

Vitreous
humor

PDR VS.
no
diabetes

A biomarker panel (galactitol and
ascorbic acid) unclear 0.860 0.810 Barba et al.

(2010) [40]

PDR VS.
no
diabetes

Xanthine, proline, citrulline, pyruvate
1.000, 0.986,
0.972, 0.944,
respectively

unclear unclear
Haines
et al.
(2018) [43]

PDR VS.
no
diabetes

DTA, EPA, DHA, ARA,
±9(10)-DiHOME,
±19,20-EpDPE, and ±12(13)-EpOME

0.960, 0.803,
0.871, 0.942,
0.805, 0.819,
0.828,
respectively

unclear unclear Zhao et al.
(2022) [46]

PDR VS.
no
diabetes

A biomarker panel (pyroglutamic acid
and
pyruvic acid)

0.951 0.955 0.857 Wang et al.
(2019) [38]
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Table 2. Cont.

Samples Cohorts Biomarkers AUC Sensitivity Specificity Study

Aqueous
humor

PDR VS.
no
diabetes

A biomarker panel
(D-2,3-dihydroxypropanoic acid,
isocitric acid, fructose 6-phosphate, and
L-lactic acid)

0.965 0.880 0.957 Wang et al.
(2019) [38]

Cerebrospinal
fluid

DR VS.
NDR

A biomarker panel (alanine, histidine,
leucine, pyruvate, tyrosine, and valine) 0.858 unclear unclear Lin et al.

(2019) [47]

Stool PDR VS.
NDR

A classifier (Top 5 are alantolactone,
desogestrel, adenine,
D-erythro-sphinganine, and corosolic
acid.)

0.960 0.846 0.936 Ye et al.
(2021) [33]

AUC, area under the ROC curve; HETE, hydroxyeicosatetraenoic acid; DTA, docosatetraenoic acid; EPA, eicos-
apentaenoic acid; DHA, docosahexaenoic acid; ARA, arachidonic acid; DiHOME, dihydroxy-octadecenoic acid;
EpDPE, epoxy-docosapentaenoic acid; EpOME, epoxy-octadecenoic acid.

3.1. Potential Biomarkers in Human Serum

There are two studies that documented potential biomarkers of DR in human serum [27,30].
Xuan et al. used multiplatform-based metabolomics to generate the metabolic profile
of serum samples from 689 subjects with DR and 216 subjects with diabetes without
DR [27]. The biomarker panel containing 12-hydroxyeicosatetraenoic acid (12-HETE) and
2-piperidone exhibited good performance for DR diagnosis. The AUC, sensitivity, and speci-
ficity of this panel were 0.946, 0.894, and 0.919, respectively, suggesting a potential value as a
biomarker for differentiating DR from diabetes. Notably, the biomarker panel also exhibited
good performance in differentiating NPDR from diabetes (AUC = 0.958, sensitivity = 0.929,
specificity = 0.901). Zuo et al. performed a widely targeted metabolomics based on ultra-
performance liquid chromatography-electrospray ionization-tandem mass spectrometry
(UPLC-ESI-MS/MS) in the serum samples from 69 subjects with DR and 69 subjects with
diabetes without DR [30]. A biomarker model called multidimensional network biomark-
ers consisting of linoleic acid, nicotinuric acid, ornithine, and phenylacetylglutamine was
established. The AUC, sensitivity, and specificity of the MDNBs were 0.92, 0.96, and
0.78, respectively.

3.2. Potential Biomarkers in Human Plasma

Eight studies have reported potential novel biomarkers for DR in human
plasma [17–20,22,24,47,48]. Xia et al. investigated the relationship between pyrimidine
metabolites and DR, and identified cytidine as a potential biomarker (AUC = 0.849,
sensitivity = 0.737, specificity = 0.919) [17]. Similarly, Xia et al. investigated the relationship
between purine metabolites and DR, and identified adenosine as a potential biomarker
(AUC = 0.913, sensitivity = 0.947, specificity = 1) [18]. Chen et al. performed metabolomics
using GC-MS and found that 1,5-gluconolactone, 2-deoxyribonic acid, gluconic acid, and
urea exhibited the potential of a biomarker (AUC = 0.71, 0.68, 0.72, 0.69, respectively) [19].
Rhee et al. recruited 183 patients with type 2 diabetes (52 PDR, 72 NPDR, and 59 NDR) and
analyzed their plasma metabolic profiles using ultra-performance liquid chromatography–
quadrupole/time-of-flight mass spectrometry (UPLC–Q–TOF–MS) and gas chromatog-
raphy (GC)–TOF–MS [20]. Their results show that glutamine and glutamic acid were
the most differential metabolites and their ratio showed a potential diagnostic value for
DR (AUC = 0.742). To identify novel metabolite markers for PDR, Zhu et al. performed
metabolomics based on LC-MS in 21 subjects with PDR and 21 subjects with a duration of
diabetes of ≥10 years but without DR, and found fumaric acid, uridine, acetic acid, and cy-
tidine to have biomarker potentials (AUC = 0.96, 0.95, 1.0, 0.95, respectively) [22]. Notably,
the biomarker potential of cytidine was again demonstrated, which is consistent with the
previous study by Xia et al. [17]. Sun et al. recruited 21 patients with PDR, 21 patients with
NPDR and 32 patients with type 2 diabetes without DR, and used ultrahigh-performance
liquid Q-Exactive mass spectrometry (UPLC-QE-MS) to analyze plasma’s metabolic pro-
file [24]. They established a formula based on the plasma concentration of pseudouridine to
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calculate the DR risk score: risk score = −0.23 × Ln (pseudouridine) + 1.88. The AUC of the
risk score for DR was 0.80, with 97.6% sensitivity and 53.1% specificity. Another formula
based on the levels of pseudouridine, N-acetyltryptophan, leucylleucine, and glutamate,
was established to calculate the PDR risk score: risk score = 0.23 × Ln(pseudouridine) +
0.16 × Ln(N-acetyltryptophan)-0.065 × Ln(leucylleucine) + 0.11 × Ln(glutamate) − 3.63.
The AUC of the risk score for PDR was 0.82, with 76.2% sensitivity and 77.4% specificity.
Curovic et al. performed metabolomics and lipidomics analyses to generate the metabolic
profile related to DR in 648 individuals with type 1 diabetes [48]. Cox proportional haz-
ard model analysis showed that higher 3,4-dihydroxybutyric acid (3,4-DHBA) was an
independent risk marker for DR progression (HR 1.55, 95% CI 1.12–2.15, p = 0.033).

3.3. Potential Biomarkers in Human Vitreous Humor

A total of four studies have investigated potential biomarkers for DR in human vitre-
ous humor [38,40,43,46]. Barba et al. acquired 1H-NMR spectra from vitreous samples of
22 subjects with type 1 diabetes with PDR and 22 non-diabetic subjects, and obtained a model
consisting of galactitol and ascorbic acid (AA) that can distinguish PDR and control with 86%
sensitivity and 81% specificity [40]. Haines et al. analyzed the vitreous humor of nine patients
with PDR and eight non-diabetic patients using UPLC-MS [43]. They performed biomarker
analysis using ROC curves, showing that xanthine, proline, citrulline, and pyruvate were the
strongest potential predictors of DR (AUC = 1.0, 0.986, 0.972, 0.944 respectively). Wang et al.
used gas chromatography coupled with time-of-flight mass spectrometry (GC-TOFMS) to iden-
tify potential DR biomarkers in vitreous humor from 28 subjects with type 2 diabetes with
PDR and 22 non-diabetic subjects [38]. They found a biomarker panel consisting of pyroglu-
tamic acid and pyruvic acid (AUC = 0.951, sensitivity = 0.955, specificity = 0.857). Zhao et al.
performed targeted lipidomics to evaluate oxylipin levels in the vitreous humor using ultra-high-
performance liquid-chromatography-multiple reaction monitoring-mass spectrometry/mass
spectrometry (UHPLC-MRM-MS/MS) [46]. Vitreous samples were collected from 41 subjects
with PDR and 22 non-diabetic subjects. Oxylipins are oxidation products of polyunsaturated
fatty acids (PUFAs). According to their results, seven oxylipins were considered as poten-
tial biomarkers: docosatetraenoic acid (DTA), eicosapentaenoic acid (EPA), docosahexaenoic
acid (DHA), arachidonic acid (ARA),±9(10)-dihydroxy-octadecenoic acid (±9(10)-DiHOME),
±19.20-epoxy-docosapentaenoic acid (±19,20-EpDPE), and±12(13)- epoxy-octadecenoic acid
(±12(13)-EpOME) (AUC = 0.96, 0.803, 0.871, 0.942, 0.805, 0.819, 0.828, respectively).

3.4. Potential Biomarkers in Other Human Samples

DR biomarkers have been predicted in the aqueous humor, cerebrospinal fluid, and
feces of humans in three metabolic studies [33,38,47]. Wang et al. also identified potential
DR biomarkers in aqueous humor using GC-TOFMS [38]. They recruited 23 subjects
with type 2 diabetes with PDR and 25 non-diabetic subjects with cataract, and found a
biomarker model consisting of D-2,3-dihydroxypropanoic acid, isocitric acid, fructose 6-
phosphate, and L-lactic acid. The AUC of the model was 0.965 with 88% sensitivity and
95.7% specificity. Lin et al. were the first to investigate the metabolomic profile of type 2
diabetes in cerebrospinal fluid [47]. Their study cohort included 19 patients with DR and
14 patients with type 2 diabetes without diabetic microangiopathy. They constructed a
multi-marker panel established by alanine, histidine, leucine, pyruvate, tyrosine, and valine
showing a high relevance to the occurrence of DR with 0.858 AUC. This multi-marker
panel was also validated in plasma with 0.836 AUC. Ye et al. performed 16S rRNA gene
sequencing and UPLC-MS-based untargeted metabolomics of fecal samples to investigate
the gut metabolome and microbiome [33]. They collected fecal samples from 45 subjects
with PDR and 90 subjects with type 2 diabetes without DR. They established a fecal
metabolite-based classifier to differentiate PDR and NDR with AUCs of 0.960 and 0.943
in train and test sets. The top 5 differential metabolites in the classifier are alantolactone,
desogestrel, adenine, D-erythro-sphinganine, and corosolic acid.
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4. Metabolic Pathways Associated with DR

To gain an in-depth understanding of the mechanism underlying metabolic disorders
in DR, we counted the differential metabolic pathways reported in plasma and vitreous from
DR patients. Purine metabolism, pyrimidine metabolism, arginine and proline metabolism,
and glutamate metabolism are the most frequently reported differential pathways in DR
metabolomics studies. Details about differential metabolic pathways are summarized in
Table 3.

Table 3. Statistics of metabolic pathways associated with DR patients.

Samples Pathways Reported Times

Plasma

Purine metabolism 4
Arginine and proline metabolism 3

Pyrimidine metabolism 3
Alanine, aspartate and glutamate

metabolism 2

Cysteine and methionine metabolism 2
4-hydroxybenzeneacetic acid 1
Arachidonic acid metabolism 1

Aspartate and asparagine metabolism 1
Caffeine metabolism 1

Creatinine metabolism 1
D-glutamine metabolism 1
Fumaric acid metabolism 1

Galactose metabolism 1
Glyceryl-glycoside metabolism 1

Histidine metabolism 1
Leukotrienes metabolism 1
Linoleic acid metabolism 1

Lysine metabolism 1
Myo-inositol metabolism 1

Niacin metabolism 1
Nitrogen metabolism 1

Pantothenate and CoA biosynthesis 1
Pentose phosphate metabolism 1

Phenylalanine metabolism 1
Polyol metabolism 1

Riboflavin metabolism 1
Sphingolipid metabolism 1

Sulfur metabolism 1
Urea cycle 1

α-linolenic acid metabolism 1

Vitreous

Arginine and proline metabolism 2
Valine, leucine, and isoleucine

biosynthesis 2

Alanine, aspartate and glutamate
metabolism

1

Aminoacyl-tRNA biosynthesis 1
Glycine and serine metabolism 1

Glycolysis 1
Nitrogen metabolism 1

Pantothenate and CoA biosynthesis 1
Pentose phosphate pathway 1
Phenylalanine metabolism 1

Purine metabolism 1
Taurine and hypotaurine metabolism 1

4.1. Pyrimidine Metabolism

Pyrimidine metabolism disorder has been reported in the blood of patients with
DR [17,22,23]. Derivatives of pyrimidine exhibit highly potential biological activity as
anti-diabetic agents [62,63]. In previous studies [17,22], changed levels of cytidine, a pyrim-



Cells 2022, 11, 3005 10 of 19

idine molecule, was observed in patients with DR. Cytidine is the precursor of cytidine
triphosphate (CTP), which affects phosphatidylcholine (PC) and phosphatidylethanolamine
(PE) biosynthetic pathways. Previous studies reported that phospholipid metabolism is
associated with diabetic nephropathy, and that the level of phospholipids decreased with
the development of diabetic nephropathy [64]. The mechanism of pyrimidine metabolism
in the onset and development of DR still needs further identification and exploration.

4.2. Glutamate Metabolism and Branched-Chain Amino Acid (BCAA) Metabolism

Glutamate metabolism is another affected abnormal metabolic pathway in DR [38].
Glutamate is not only a key signal in the amplification of insulin secretion [65], but is
also the major excitatory neurotransmitter in the central nervous system and retina [66,67].
Several studies found increased glutamate and decreased glutamine levels in the vitreous
humor of patients with PDR and in diabetic rat retina [68–70]. The increased level of gluta-
mate in the retina will cause neurotoxic effects and the activation of ionotropic glutamate
receptors in excess, mainly the N-methyl-d-aspartame receptor (NMDAR), resulting in
uncontrolled intracellular calcium responses and cell death [71–73]. Meanwhile, the levels
of leucine, isoleucine, and valine in BCAA metabolism were increased in the serum of DR
patients and in the diabetic rat retina [27,74], which are considered to be correlated with
the neurotoxic effects of glutamate, which plays an important role in DR neurodegener-
ation [74]. Therefore, more attention to the abnormal glutamate metabolism and BCAA
metabolism may contribute to understanding the pathogenesis of DR.

4.3. Pantothenate and CoA Biosynthesis

Notably, pantothenate and CoA biosynthesis were also altered in both the plasma and
vitreous humor of patients with DR [49]. Wang et al. discovered a descending trend of
pantothenate in the plasma of PDR patients and an ascending trend of pantothenate in
the vitreous [49]. Ma et al. found that the levels of pantothenate and CoA biosynthesis
were significantly down-regulated in the urine of patients with diabetic kidney disease [75],
which was consistent with Wang’s result in plasma. This phenomenon can probably be
explained by a lower pantothenate conversion due to impaired renal tubular reabsorption
of vitamins in patients with diabetes complications [76]. A possible explanation for up-
regulated levels of pantothenate and CoA biosynthesis in vitreous humor is the mechanism
of protecting retinal cells from damage [49]. Endothelial cells were protected from oxidative
stress by supplementation with pantothenate [77,78]. Alteration in pantothenate and CoA
modulate mitochondrial energy metabolism [79], which is most likely linked to the onset
and progression of DR.

4.4. Polyol Pathway

Evidence suggests that the polyol pathway can exacerbate oxidative stress to promote
the progression of retinopathy [80]. In the hyperglycemic condition, the polyol pathway
of glucose metabolism becomes active in human and rat retinal cells [81,82]. In the polyol
pathway, glucose is reduced to sorbitol by aldose reductase (AR), and sorbitol is subse-
quently oxidized to fructose by sorbitol dehydrogenase (SDH). Fructose can be converted to
fructose-3-phosphate by phosphorylation, and then fructose-3-phosphate can be transferred
to 3-deoxyglucosone, both of which can be involved in the formation of advanced glycation
end products (AGEs) [80]. Reactive oxygen species (ROS) induced by AGEs participate
in the oxidative stress process of DR, leading to the impairment of retinal vessels [80].
Secondly, AR can convert NADPH to NADP+ and SDH can convert NAD+ to NADH in
the polyol pathway. During the reaction, NADPH is consumed in excess, which results in
the reduced synthesis of glutathione (GSH) and the weakened capacity against oxidative
stress [83]. In summary, the polyol pathway triggered by hyperglycemia can produce AGEs
precursors and expose retinal cells to oxidative stress.
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5. Predictions of Metabolism-Based Molecular Targets in DR

To explore potential metabolic enzymes with regulatory potential in DR, we inte-
grated enzymes in DR-related metabolic pathways with a genome-wide association study
(GWAS). GWAS refers to multi-center, large sample, and repeatedly verified association
studies between genes and diseases at the whole genome level aiming to identify genotype–
phenotype associations [84]. Genetic markers (such as SNP) are typed to comprehensively
reveal genes related to the onset and development of diseases. Single nucleotide poly-
morphism (SNP), the most common heritable variation, refers to the polymorphism of the
DNA sequence induced by the alteration of a single nucleotide including the conversion
or transversion of a single base and the insertion or deletion of bases [85]. GWAS has
been successful in identifying risk variants at genetic loci for many diseases including
cancers [86–88], diabetes [89], and DR [90].

As shown in Figure 2, a total of 23 enzyme-related genes in 6 DR associated metabolic
pathways have SNPs through GWAS database analysis. Among these 23 genes, ADCY5,
ADCY7, AK5, ENPP3, GUCY1B1, NUDT5, PDE3A, PDE3B, PDE4A, PDE6B, and PGM1
are involved in purine metabolism, DMGDH, PSPH, and SRR are in glycine, serine and
threonine metabolism, and ASAH1, CERS6, and GBA2 are in sphingolipid metabolism
(Figure 3). As shown in Figure 4, ARG1, CPS1, and NOS1 are involved in arginine biosyn-
thesis, ARG1, AOC1, CKMT1B, and NOS1 are involved in arginine and proline metabolism,
and CPS1 and GAD1 are involved in glutamate metabolism.

All 23 genes encode metabolic enzymes in differential metabolic pathways of DR, and
there are SNPs associated with diabetes risk in the 23 genes. These indicated a potential
link between these enzymes and the pathogenesis of DR. In purine metabolism, PDE3A,
PDE3B, PDE4A and PDE6B are closely associated with retinal degeneration under hypoxic
or ischemic conditions [91], and the role of ADCY5, ADCY7, AK5, ENPP3, GUCY1B1,
NUDT5, and PGM1 in the onset and development of DR is unknown. In addition, AGR1
and NOS1 are involved in arginine metabolism, which was reported to play an important
role in the progression of oxidative stress of DR [92,93].
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Figure 2. Strategies for exploring potential molecular targets through metabolomics studies. Twenty-
three potential regulatory enzymes (genes) were obtained by integrating metabolomics with GWAS.
First, the enzyme-related genes in the disordered metabolic pathways were obtained by retrieving
metabolic pathways in the KEGG database. Next, SNPs associated with DM or DR were acquired by
searching the GWAS Catalog database. Finally, the enzyme-related genes were matched with genes
with SNPs.
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Figure 3. The metabolic network of purine metabolism, glycine, serine and threonine metabolism, and
sphingolipid metabolism in DR with potential enzyme targets. Schematic overview of the DR-related
metabolic pathways including purine metabolism, glycine, serine and threonine metabolism, and
sphingolipid metabolism with related enzymes with SNP depicted in different color schemes. Purine
metabolism is depicted in blue, glycine, serine and threonine metabolism in red, and sphingolipid
metabolism in green.
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Figure 4. The metabolic network of arginine biosynthesis, arginine and proline metabolism, and
glutamate metabolism in DR with potential enzyme targets. Schematic overview of the DR-related
metabolic pathways and enzyme genes with SNP. Enzymes involved in arginine biosynthesis, arginine
and proline metabolism, and glutamate metabolism are depicted in red, green and blue, respectively.

5.1. Arginase 1 and Nitric Oxide Synthase 1

ARG1 encodes arginase 1 catalyzing the hydrolysis of L-arginine to urea and L-
ornithine. Ornithine is converted to citrulline, which is converted to arginosuccinate,
and finally back to arginine (Figure 4). A recent study showed that high levels of arginase 1
and SNPs (rs2781666 and rs2781665) within the ARG1 are associated with increased type
2 diabetes risk [94]. Elevated concentrations of arginine have been observed in plasma,
serum, and the vitreous humor of patients with DR [23,25,26,42]. In addition to the urea
cycle, arginine is also involved in the nitric oxide synthesis. Nitric oxide synthase (NOS)
catalyzes arginine to citrulline and nitric oxide (NO) [95]. Arginine is the common substrate
of nitric oxide synthase and arginase. Under physiological conditions, arginase and NOS
compete for the same substrate arginine to produce ornithine and nitric oxide. A study
focusing on diabetic cardiomyopathy using H9c2 cells with high glucose treatment found
that increased arginase expression results in more arginine flowing to the urea cycle, which
reduces the production of NO [96]. In this case, NOS is uncoupled and produces superoxide
anions [96]. The superoxide anions react with NO to turn into toxic oxidant peroxynitrite,
which is a key indicator of oxidative stress [97]. A previous study has found the increased
level of nitrotyrosine, the marker of peroxynitrite, in retinas of the streptozotocin (STZ)-
induced diabetic mice [92]. Another study using STZ-induced diabetic mice identified that
the inhibition of arginase can reduce nitrotyrosine formation [93]. All of these examples
show that ARG1 and NOS1 possess the potential to be regulatory and therapeutic targets
for preventing or reversing the oxidative stress of DR.

5.2. Phosphodiesterase

Phosphodiesterase (PDE) catalyzes the hydrolysis of cAMP and cGMP, the second mes-
sengers that play important roles through multiple intracellular signaling pathways [98,99].
The PDE family consists of 11 members [100]. SNPs within the PDE3A, PDE3B, PDE4A, and
PDE6B genes are associated with increased diabetes risk [101–103]. A previous study re-
ported that the accumulation of cGMP through inhibiting PDE prevented hypoxia-induced
cell death in porcine retinal explants, which reveals the potential for PDE inhibition to
reduce retinal degeneration under hypoxic or ischemic conditions [91].
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6. Conclusions

Over the past dozen years, the metabolomics of DR has experienced great growth.
Many works have been undertaken so far in the field of DR for biomarker discovery. For
example, 12-HETE and 2-piperidone in serum, cytidine and 3,4-DHBA in plasma, and
pyruvate in vitreous were all identified to have great potentials to be biomarkers. Moreover,
subtle alterations in biological pathways provide insight into the mechanisms. Twenty-
three enzymes in DR associated metabolic pathways show potential as targets. Among
these 23 enzymes, AGR1 and NOS1 are closely related to arginine metabolism, which was
reported to play an important role in the progression of the oxidative stress of DR. PDE is
responsible for the hydrolysis of cyclic nucleotides and is closely associated with retinal
degeneration under hypoxic or ischemic conditions.

Promising progress in identifying novel biomarkers has been made, yet there are also
many limitations. Firstly, most studies focused on the identification of biomarkers for
distinguishing between DR and DM. However, few studies further analyzed biomarkers
for different stages of DR, especially the early stage (NPDR), which is very important
for early diagnosis and prevention. Secondly, a large number of potential biomarkers
found in some studies are difficult to be validated in others. Differences in study design,
race and region, and clinical characteristics, as well as small sample sizes in some studies,
may lead to this issue. Hence, comprehensive research should be conducted to analyze
the numerous discriminant metabolites in different kinds of samples for the purpose of
identifying biomarkers with real clinical diagnostic values. In terms of target prediction,
some of the predicted molecular targets, such as ADCY5, ADCY7, AK5, ENPP3, GUCY1B1,
and NUDT5, have no further experimental evidence to be associated with DR. Among
them, ADCY5 and ADCY7 are worthy of further exploration. ADCY5 and ADCY7 encode
adenylate cyclase 5 and adenylate cyclase 7, respectively [104]. Several previous GWASs
demonstrated that SNPs (for example rs11708067 and rs11717195) in ADCY5 may be
associated with type 2 diabetes [101,105–107]. Hodson et al. reported that ADCY5 mRNA
expression in islets was decreased when subjects have risk alleles at rs11708067 [108]. They
showed that ADCY5 is essential to couple glucose to insulin secretion by converting glucose
signals into cAMP production. Predicted molecular targets provide broader exploration
space for DR research.

Metabolomics is demonstrating its power, from biomarker discovery to understanding
the mechanisms that underlie DR. This has also been made possible as metabolomics
has become more widely integrated with other omics, such as GWAS. The application
of metabolomics in DR might also be expanded for judging and monitoring the precise
treatment.
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