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Abstract
Insulin resistance (IR) is the most common pathophysiological change in patients with type 2 diabetes mellitus (T2DM). Several
recent studies have suggested that the gut microbiome and microbial metabolites are involved in the pathogenesis of IR. Bariatric
surgery, as an effective treatment for T2DM, can markedly alleviate IR through mechanisms that have not been elucidated. In this
review, we summarize the current evidence on the changes in the gut microbiome and microbial metabolites (including lipopoly-
saccharide, short-chain fatty acids, branched-chain amino acids, aromatic amino acids, bile acids, methylamines, and indole deriv-
atives) after bariatric surgery. Additionally, we discuss the mechanisms that correlate the changes in microbial metabolites with the
postoperative alleviation of IR. Furthermore, we discuss the prospect of bariatric surgery as a treatment for T2DM.
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Abbreviations
IR Insulin resistance
T2DM Type 2 diabetes mellitus
GB Gastric banding
RYGB Roux-en-Y gastric bypass
SG Sleeve gastrectomy
LPS Lipopolysaccharide
SCFAs Short-chain fatty acids
BCAAs Branched-chain amino acids
AAAs Aromatic amino acids
TMAO Trimethylamine N-oxide
IPA Indole propionic acid
BAs Bile acids

Introduction

Insulin resistance (IR), a major predisposing factor for type 2
diabetes mellitus (T2DM), is a clinical condition associated
with decreased responsiveness to normal circulating levels of
insulin [1, 2]. Observational studies have suggested that bar-
iatric or metabolic surgery can rapidly improve the clinical
and laboratory manifestations of patients with T2DM, includ-
ing IR [3, 4]. There are various types of bariatric surgery, such
as gastric banding (GB), Roux-en-Y gastric bypass (RYGB),
and sleeve gastrectomy (SG) [4]. Bariatric surgery involves
anatomically adjusting the digestion order of food through
gastric volume reduction and removal of duodenum, which
affects the composition and diversity of gut microbiota.

The human gut microbiota, whose total weight exceeds
1 kg, is a complex mutualistic system that comprises approx-
imately 100 trillion bacteria [5–7]. The gut microbiota is es-
sential for providing nourishment, regulating epithelial devel-
opment, and modulating innate immunity and intestinal mi-
croenvironment [8]. The gut microbiota plays a key role in the
development of IR and metabolic syndrome [2, 9]. Recent
studies have demonstrated the correlation between IR and
microbial metabolites, including lipopolysaccharide (LPS),
short-chain fatty acids (SCFAs), amino acids (especially
branched-chain amino acids (BCAAs) and aromatic amino
acids (AAAs)), and bile acids [5, 10–13]. Studies on
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metabolomics will be vital to understanding the metabolic
interactions between host and microbes and how microbial
metabolites are associated with IR and T2DM.

In this review, we summarize the current evidence on the
changes in the gut microbiome andmicrobial metabolites after
bariatric surgery, with a focus on the impact of gut microbes
and metabolites, on postoperative alleviation of IR.
Additionally, we discuss the specific mechanisms that corre-
late the changes in microbial metabolites with the alleviation
of IR after bariatric surgery, based on our current understand-
ing of the functionality of microbial metabolism. Furthermore,
we discuss the prospect of bariatric surgery as a treatment for
T2DM. The potentiality of microbial metabolites is also men-
tioned, which work as indicators to evaluate the postoperative
improvement of glucose homeostasis and as basis of other
therapeutic approaches.

Alleviation of IR After Bariatric Surgery

Bariatric surgery, especially RYGB, is now recognized as the
most effective treatment for T2DM and morbid obesity. In a
randomized controlled trial of bariatric surgery and drug ther-
apy, RYGB and SG exhibited a better therapeutic effect on
T2DM than the traditional drug treatment [25]. Recently, a
multicenter cohort study demonstrated that the RYGB group
exhibited higher weight loss and alleviation of T2DM than the
SG group [26]. The alleviation of IR symptoms is reported to
occur very early after bariatric surgery and is independent of
weight loss [27]. This suggests that the mechanism underlying
the alleviation of IR and obesity is sequential or even causal.
Previous studies have hypothesized that the exclusion of du-
odenum from the digestive tract after RYGB has the following
two main effects: decreased hyperglycemia and increased glu-
cose tolerance; modulation of the hormone level, which pro-
motes the secretion of glucagon-like peptide-1 (GLP-1), pep-
tide tyrosine tyrosine (PYY), and other substances to regulate
satiety [28]. Meanwhile, increased GLP-1 secretion is report-
ed to ameliorate insulin sensitivity of the islet β cells and
stimulate insulin secretion [29], which subsequently alleviates
the symptoms of IR and T2DM. However, the mechanism
underlying the modulation of hormone levels after RYGB is
still unclear. The gut microbiota and microbial metabolites
may be potentially involved in the modulation of hormone
levels after RYGB.

Changes in the Gut Microbiota Composition
After Bariatric Surgery

A number of studies revealed that the gut microbiota of
insulin-resistant patients or animal models comprises some
unique components and structural characteristics. However,

there is no consensus on these findings. At the phylum level,
the insulin-resistant group exhibited a significantly higher
abundance of Firmicutes than the control group.
Additionally, the dominant flora in the control group was re-
versed in the insulin-resistant group. Thus, the ratio of
Firmicutes/Bacteroidetes increased markedly in the insulin-
resistant group [2, 30, 31]. At the genus level, the T2DM
group exhibited significantly low levels of Akkermansia
muciniphila, which belongs to the phylum Verrucomicrobia
and is involved in mucin degradation. The transplantation of
Akkermansia muciniphila into insulin-resistant recipient sig-
nificantly improved insulin sensitivity and glucose tolerance
and enhanced the Treg cell level [32]. However, most current
studies have evaluated the microbiota in the animal models of
T2DM with very few clinical trials. Additionally, IR is asso-
ciated with significantly decreased levels of butyrate-
p r oduc i ng ba c t e r i a , i n c l ud i ng Ro s ebu r i a a nd
Faecalibacterium prausnitzii, which markedly affect the pro-
duction and secretion of metabolites that protect the intestinal
barrier and promote insulin sensitivity [33, 34].

Bariatric surgery strongly promotes the remodeling of the
gut microbiota. Previous studies have reported the postopera-
tive enrichment of floral diversity. The increase in the propor-
tion of butyrate-producing bacteria, such as Roseburia and
Faecalibacterium prausnitzii, can improve insulin sensitivity
of various tissues and organs [31, 35]. The abundance of γ-
proteobacteria contributes to the postoperative improvement
of the insulin signaling pathway [23]. The abundance of
Bacteroidetes increases significantly after SG [36], which de-
creases the ratio of Firmicutes/Bacteroidetes. However, the
change in the absolute value of Firmicutes and Bacteroidetes
after bariatric surgery is still controversial [27]. Compared to
the control group, the abundance of Firmicutes is significantly
higher and that of Bacteroidetes is lower in rats after the
duodenal-jejunal bypass (DJB) [37], and in clinical patients
after RYGB [36]. Moreover, SG reshapes the diversity of the
gut microbiota and improves the diurnal oscillation of the gut
microbiota, which affects the host metabolism [38]. The find-
ings of these studies indicate that the gut microbiota plays an
important role in alleviating IR symptoms after bariatric sur-
gery. However, the correlation between the phenotype of post-
operative gut microbiota and the mechanism underlying the
alleviation of IR has not been elucidated.

Changes in Gut Microbiota Metabolites After
Bariatric Surgery

Several studies have elucidated some mechanisms underlying
IR caused due to the disrupted composition and function of
gut microbiota. However, the complete mechanism has not
been elucidated. Various hypotheses, including chronic in-
flammation, intestinal barrier disturbance, and metabolic
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disorders, have been proposed. In addition to several overlaps,
there are few contradictions between these hypotheses. We
highlight the preoperative and postoperative changes in mi-
crobial metabolites associated with IR in the following section
(Table 1).

LPS

Lipopolysaccharides (LPS), a major component of the gram-
negative bacillus (G-) cell membrane, play an important role
in the immune response. Several studies have demonstrated
that the LPS levels are high in the peripheral serum of T2DM
model mice and patients with T2DM [7, 10, 39, 40]. The
mismatch between the enhanced LPS level in the peripheral
circulation and gut microbiota suggests severe impairment of
the intestinal barrier. The expression of zonula occludens-1
(ZO-1) and occludin, which form tight junctions of the intes-
tinal epithelium, is inhibited [41]. Thus, the bacteria colonized
in the intestine and their metabolites enter the blood circula-
tion from the intestinal cavity, which is called the translocation
of LPS. LPS activates CD14/TLR4 to phosphorylate IRS
through JNK and IKKβ , which leads to IR [42].
Additionally, the LPS-activated TLR4 induces the expression
of inducible nitric oxide synthase (iNOS). The downstream S-
nitrosation of the insulin receptor and IRS-1 impairs the insu-
lin signaling and reduces insulin sensitivity in the liver, skel-
etal muscle, and adipose tissue [43–45].

The concentration of LPS and LPS-binding protein is
markedly decreased in the peripheral serum after bariatric sur-
gery. Meanwhile, the expression of inflammation-related re-
ceptors (CD14, TLR4, and TLR2), NF-κB DNA binding, and
C-reactive protein (CRP) is significantly reduced after bariat-
ric surgery [14, 46]. This indicated that LPS is involved in IR
and that bariatric surgery plays an important role in the reduc-
tion of pro-inflammatory factors and endotoxins. Meanwhile,
some studies have indicated the role of LPS-mediated inflam-
matory mechanisms in bariatric surgery to alleviate IR.
Therefore, LPS may be used as an indicator to evaluate the
postoperative improvement of glucose homeostasis and
prognosis.

SCFA

Short-chain fatty acids (SCFAs) are the primary end-products
of fermentation of non-digestible carbohydrates. SCFAs are
generated by the gut microbiota inhabiting the cecum and
colon. The main types of SCFAs are acetate, propionate, and
butyrate [47–49]. Acetate is involved in energy production,
lipid synthesis, and protein acetylation [50]. Propionate can
serve as a substrate in the process of gluconeogenesis [51].
Butyrate is a major component of colonic epithelial cells [52],
and plays an important role in maintaining intestinal barrier
integrity and host metabolic homeostasis [13, 53]. Clinical

investigations have revealed that the total amount of SCFA
in the feces of the obese group is significantly higher than that
of the lean group. The overweight and obese groups exhibited
a high proportion of propionate [54]. One study demonstrated
that the total SCFA concentration and the proportion of indi-
vidual SCFAs in the feces of the patients remained unchanged
or decreased during weight loss after bariatric surgery [15]. In
contrast, another study using a mouse model reported that the
RYGB group exhibited higher total amount of SCFA in feces,
significantly lower levels of acetate, and significantly higher
levels of propionate than the sham operation group [16]. It is
unclear if the SCFA concentration in peripheral blood can
reflect the changes in postoperative gut microbiota. The
SCFA concentration in peripheral blood is affected by liver
metabolism and endogenous fatty acids. A more accurate
strategy is the determination of SCFA concentration in the
portal blood, which is only applicable to patients undergoing
complex abdominal surgery and those who have suddenly
died [15]. The findings of the studies on the role of SCFA
produced by intestinal flora in the occurrence of IR and the
effect of bariatric surgery on its changes are unclear. Detailed
studies are needed to elucidate these mechanisms.

SCFA is reported to exert a strong anti-inflammatory ef-
fect, which can alleviate the symptoms of IR by inhibiting the
activation of NF-κB in the inflammatory signaling pathway
[55]. Some studies have demonstrated that the oral adminis-
tration of acetate can improve obesity and glucose tolerance in
the T2DM animal models. The administration of acetate is
reported to upregulate GLUT-4 gene expression [56, 57].
Moreover, targeted application of propionate in the human
colon can significantly promote the secretion and release of
PYY and GLP-1 [58]. Butyrate, which is metabolized by the
gut microbiota, can reduce the relative abundance of IR-
related bacteria, including Lachnospiraceae, Rikenellaceae,
and Paraprevotellaceae, and alleviate IR symptoms by in-
creasing the levels of p-AMPK and GLUT-4 in the adipose
tissue [59]. Butyrate can also promote the generation and dif-
ferentiation of Treg cells in the extrathymic tissue [60], which
decreases inflammation and consequently alleviates the sever-
ity of IR. However, recent studies have demonstrated that
increased acetate production resulting from the nutrient-gut
microbiota interaction can cause increased glucose-
stimulated insulin secretion and ghrelin secretion, as well as
increased hyperphagia and obesity, through the microbiome-
brain-β cell axis [61]. Additionally, further studies reported
that acetate can be used as a substrate by the gut microbiota to
produce butyrate, which plays an important role in modulating
the microbiome composition, inhibiting adipogenesis, and al-
leviating IR [62]. Propionate was reported to increase the pro-
duction of glucagon and fatty acid-binding protein 4
(FABP4), impair insulin activity, and promote IR in mice
and humans [63]. This suggests that different types of
SCFAs produced by the gut microbiota may play varied roles
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in the pathophysiology of IR. Thus, there is a need to analyze
specific SCFAs in further researches.

Furthermore, in addition to regulating biological functions,
SCFAs function as carbohydrates. Excessive consumption of
SCFAs increases the energy load of the body, which may
affect its ability to alleviate IR. In addition to differences in
the gut microbiota composition and microbial metabolites ob-
served between the animal models and clinical patients and
those caused due to various types of bariatric surgery, the
diverse regulatory effects of different SCFAs may lead to
different outcomes. SCFAs are critical mediators in the regu-
lation of the gut microbiome. The regulatory mechanisms of
specific SCFAs in alleviating IR after bariatric surgery must
be carefully studied.

BCAA

Branched-chain amino acids (BCAAs) can be produced by the
mammalian gut microbiota. BCAAs, such as leucine, isoleu-
cine, and valine, are essential amino acids. However, high
concentrations of BCAA are a major risk factor for IR and
T2DM [11, 64]. The serum metabolomic analysis revealed
that the insulin-resistant individuals exhibited a characteristic
high serum BCAA concentration. The enhanced serum
BCAA concentration was closely related to the enhanced
BCAA biosynthesis by the gut microbiota and the downreg-
ulation of genes encoding bacterial inward transporters for
BCAA [9]. Prevotella copri and Bacteroides vulgatus, which
are abundant in the feces of patients with T2DM, contribute
markedly to the metabolome changes in insulin-resistant pa-
tients. The abundance of P. copri and B. vulgatus is associated
with increased levels of serum inflammatory factor IL-6 [65].
This indicates that the mechanism that triggers IR may be
associated with metabolism-related chronic intestinal inflam-
mation. In the animal models, the consumption of high-fat diet
and P. copri resulted in various metabolic changes, including
increased serum BCAA concentration, decreased glucose tol-
erance, and impaired insulin sensitivity, when compared to the
control group [9]. This suggested that P. copri may increase
the BCAA pool and contribute to the occurrence of IR. BCAA
activates the mammalian target of rapamycin complex 1
(mTORC1), the key intersection of amino acids and insulin
signaling pathway, phosphorylates IRS-1, negatively affects
the insulin signaling pathway, and blocks signal transmission
[66]. However, the specific reasons for the increase in BCAA
concentration in the blood circulation of insulin-resistant pa-
tients are not clear. Additionally, the role of mTORC1 in the
pathogenesis of IR is still unclear. The metabolome of insulin-
resistant and obese patients is associated with elevated gluta-
mate levels [67]. Recent studies have indicated that the elevat-
ed serum glutamate concentration in obese patients can be
reversed by SG surgery, which is closely related to a
glutamate-fermenting Bacteroides thetaiotaomicron [18].T
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This indicated that the alterations in the gut microbiota and
microbial metabolites after metabolic surgery can alleviate the
complications of obesity. However, the alleviation of IR as a
mechanism for the alleviation of obesity has not been
confirmed.

Clinical investigations have reported that obese patients
exhibit a significant decrease in the BCAA levels after
RYGB, which was independent of weight loss [17]. Further
studies are needed to determine if the reduction in BCAA can
be used as an indicator to quantify the postoperative effect of
bariatric surgery. The postoperative reduction in the abun-
dance of Clostridium decreases the bacterial protein hydroly-
sis, which subsequently reduces the production of BCAA in
the intestinal lumen and the concentration of BCAA in periph-
eral blood [68]. However, most studies evaluating the postop-
erative variations in gut microbiota have only analyzed the
microbiota at the phylum level [69]. There is a need for accu-
rate identification of specific genera that affect BCAA produc-
tion, such as P. copri and B. vulgatus. Therefore, the role of P.
copri in decreasing the BCAA concentration after bariatric
surgery must be evaluated in future studies.

AAA

The concentration of aromatic amino acids (AAAs), such as
tyrosine, phenylalanine, and tryptophan (TPR), in the periph-
eral blood is closely related to the gut microbiota metabolism.
The elevated levels of AAAs, which indicate the occurrence
of IR, are an important risk factor for T2DM [11, 18].
Tryptophan is not absorbed in the upper digestive tract and
can be metabolized by the intestinal flora to indole derivatives
[70]. Indole derivatives are important microbiota-host signal-
ing molecules and have a role in the pathophysiology of
T2DM, which will be introduced in the next part. The periph-
eral concentrations of phenylalanine and tyrosine markedly
decline after bariatric surgery [71, 72]. However, there is no
direct evidence to correlate postoperative changes in these two
AAAs and that of the gut microbiota. AAA and its derivatives
derived from the intestinal flora metabolism are strongly cor-
related to the occurrence of IR. Kynurenine (KYN) is the main
product of TPR degradation. KYN and its metabolites (includ-
ing KYNA, QUIN, and NAD+) are actively involved in in-
flammation, immune response, and nerve excitability [73].
Some clinical studies have demonstrated that the peripheral
serum concentration of KYN and its metabolites, as well as
the ratio of KYN/TPR, are positively correlated with the oc-
currence of IR [74, 75]. One of the potential pathological
mechanisms associated with the development of IR is the
impairment of TRP-KYN metabolism, and there is clear evi-
dence suggesting that the gut microbiota is involved in this
pathological mechanism [73]. The levels of TRP, KYN, and
its derivatives, and the ratio of KYN/TPR markedly decrease
after bariatric surgery, which was positively correlated with

weight loss and improvement of glucose homeostasis [19].
However, the correlation between the changes in the TPR-
KYN metabolism after surgery and alterations in the gut mi-
crobiota remains unclear. The role of recently discovered in-
testinal flora metabolites with regulatory effects such as amino
acids and their derivatives in alleviating IR after metabolic
surgery must be evaluated in future studies.

Indole Derivatives

Indole, a signal molecule, is not endogenously produced by
the human body. Indole is produced due to the enzymatic
action of intestinal microbial tryptophanase. Indole functions
as an interspecies signaling molecule in the immune, metabol-
ic, and endocrine functions between the gut microbiota and
the host. Indole and its derivatives are involved in the patho-
genesis of metabolic syndrome [5, 76]. Indole propionic acid
(IPA) is the indole derivative associated with IR. One clinical
study reported that IPA is negatively correlated to the risk of
developing T2DM [77]. The modification of gut microbiota
after RYGB can reverse the low IPA levels in obese animal
models [20]. The concentration of IPA in peripheral blood is
reported to be positively correlated to the diversity of gut
microbiota and some probiotics, including butyrate-
producing bacteria (Faecalibacterium prausnitzii and
Coprococcus), which were associated with postoperative alle-
viation of IR. The abundance of these bacteria increased after
bariatric surgery. The IPA concentration was negatively cor-
related with acetate-producing bacteria, such as Blautia and
Tenericutes, whose abundance decreased after bariatric sur-
gery [78]. The mechanisms underlying the alleviation of IR
by indole and its derivatives may be related to the protection
of the intestinal barrier integrity and the recovery of chronic
mild inflammation [79]. Meanwhile, indole may promote the
secretion of GLP-1 through the regulation of L cells to allevi-
ate IR symptoms [80]. However, it is difficult to identify the
causal relationship between the decrease in blood glucose af-
ter bariatric surgery and the alleviation of IR induced by in-
creased levels of indole and its derivatives because hypergly-
cemia can reduce the production of indole by inhibiting
tryptophanase [81].

Methylamines

Trimethylamine (TMA) is a product of the intestinal
microbiota-metabolizing precursors, such as choline and L-
carnitine. TMA is mainly oxidized to trimethylamine N-
oxide (TMAO) in the liver by flavin-containing
monooxygenase 3 (FMO3), whose expression is regulated
by bile acid-activated farnesoid X receptor (FXR) [82, 83].
A cohort study demonstrated a weak but significant correla-
tion between the decreased TMAO levels and alleviation of IR
[84]. One research has demonstrated that circulating TMAO
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and its biosynthetic pathways may contribute to the regulation
of glucose metabolism and insulin sensitivity [85]. The
TMAO biosynthetic pathway involving FMO3 may be a nov-
el target for the restoration of whole-body insulin sensitivity.
The metabolism of TMAO is closely related to the gut micro-
biota. TMAO can be reduced to TMA by the gut microbiota
(predominantly Enterobacteriaceae) [86]. The abundance of
Enterobacteriaceae markedly increases after bariatric surgery
[69], which indicated that the postoperative TMAO levels are
reduced. Interestingly, in addition to alleviation of IR symp-
toms and chronic inflammation, the TMAO levels increase
after bariatric surgery by approximately 2-fold when com-
pared to those before surgery [21]. A similar increase in the
levels of TMAO has been reported in patients after RYGB
surgery [22]. The gut microbiota may utilize multiple path-
ways to regulate TMAO. The increased abundance of facul-
tative anaerobic bacteria after surgery leads to a decline in the
intestinal anaerobic metabolism [22]. The abundance of
Pseudomonas containing TMA monooxygenase increases af-
ter bariatric surgery [87]. These mechanisms indicate that the
levels of TMAO increase after RYGB. However, the genus
that plays a major role in this process is unknown. Metabolic
surgery is associated with increased TMAO levels and allevi-
ation of IR at the same time. This indicated that metabolic
surgery may block a pivotal node of the TMAO/FMO3 met-
abolic pathway, which is involved in IR signaling. Moreover,
the elevated levels of TMAO following bariatric surgery may
not significantly delay the process of IR alleviation. Further
studies are needed to conclusively determine the role of ele-
vated TMAO levels in alleviating IR.

Bile Acids

Bile acids are endogenous steroid molecules synthesized from
cholesterol, which affects glucose and lipid homeostasis and
energy expenditure. Bile acids can be reabsorbed in the ileum
through the hepato-intestinal circulation. The gut microbiota
plays a major role in the synthesis, metabolism, and reabsorp-
tion of bile acids in the body through the interaction between
bile acids and their receptors [88, 89]. Primary bile acids,
especially chenodeoxycholic acid (CDCA) [90], promote the
release of FGF15/19 from the ileal epithelial cells by activat-
ing FXR (FGF15 in mice and FGF19 in humans), which in-
hibits gluconeogenesis and lipid production and improves glu-
cose tolerance and insulin sensitivity [91]. FXR is also report-
ed to be expressed in the enteroendocrine L cells. FXR exerts
an inhibitory effect on GLP-1 secretion [92]. Additionally,
CDCA can inhibit the secretion of pro-inflammatory
adipokines (e.g., TNF-α and IL-6) through FXR, which pro-
motes the secretion of insulin-sensitive adipokines (e.g., lipo-
protein and leptin) to alleviate IR [93]. Secondary bile acids,
especially lithocholic acid (LCA) and deoxycholic acid
(DCA), function through Takeda G protein-coupled receptor

5 (TGR5). The activation of TGR5 promotes the
enteroendocrine L cells to secrete GLP-1 [94], which then
alleviates the symptoms of IR. The increase in GLP-1 concen-
tration after RYGB surgery is strongly correlated to DCA,
which acts on the receptor TGR5 and functions through
downstream mTORC1 [95].

One clinical study demonstrated that the serum levels of
primary bile acid decreased in patients 6 months after SG
surgery, while those of the secondary bile acid increased sig-
nificantly [24], which is closely related to the postoperative
alterations of the gut microbiota. Moreover, an increase in the
levels of glycodeoxycholic acid, a conjugated secondary bile
acid, was significantly associated with an increase in insulin
sensitivity after bariatric surgery [96]. Thus, the change in bile
acid concentration depends on the specific type of bariatric
surgery. Most studies indicate that circulating bile acids in-
crease following RYGB and other malabsorptive procedures
[23]. The increased circulating bile acid concentration follow-
ing bariatric surgery can promote the secretion of FGF19 by
activating FXR, which alleviates IR. This process is closely
related to the abundance of Roseburia [27, 97]. However, the
relationship between cause and effect remains unknown.
Recent studies have suggested that bile diversion to the ileum
(BG-IL) surgery can improve glucose homeostasis through
the intestinal FXR-GLP-1 axis and alter intestinal bile acid
availability. Additionally, the abundance of Akkermansia
muciniphila increases after BG-IL independent of weight loss
[98]. Bile acids contribute to the occurrence of IR by affecting
the species of the intestinal flora and by being metabolized by
the intestinal flora. The alterations in various bile acids and
their derivatives after metabolism are still the current research
hotspots.

Conclusions

The gut microbiota has been demonstrated to have a major
influence on the alleviation of IR after bariatric surgery.
However, no consensus has been reached on the underlying
mechanism. In recent years, several studies have linked the
gut microbiota to the postoperative alterations of the metabo-
lome, which are crucial for the alleviation of IR. We compre-
hensively analyzed the changes in the gut microbiota and mi-
crobial metabolites after bariatric surgery and the role of these
metabolites in the alleviation of IR. The analysis revealed that
the gut microbiota and its related metabolites are involved in
the pathogenesis of IR. Some microbiota can serve as a refer-
ence indicator to monitor or evaluate the alleviation of IR after
metabolic surgery. Further studies on the regulation of IR by
gut microbiota metabolites will provide a relevant theoretical
basis for the selection of specific types of bariatric surgery or
targeted drugs as an alternative to surgery for treating IR. The
current studies are inadequate and further experimental
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researches and clinical trials are needed to support and devel-
op these conclusions, especially the crosstalk between gut
microbiota changes, microbial metabolites, and IR symptoms
after bariatric surgery.
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