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AIM: To develop and validate a radiomics nomogram for identifying high-risk carotid pla-
ques on computed tomography (CT) angiography (CTA).
MATERIALS AND METHODS: A total of 280 patients with symptomatic (n¼131) and

asymptomatic (n¼139) carotid plaques were divided into a training set (n¼135), validation set
(n¼58), and external test set (n¼87). Radiomic features were extracted from CTA images. A
radiomics model was constructed based on selected features and a radiomics score (rad-score)
was calculated. A clinical factor model was constructed by demographics and CT findings. A
radiomics nomogram combining independent clinical factors and the rad-score was con-
structed. The diagnostic performance of three models was evaluated and validated by region of
characteristic curves.
RESULTS: Calcification and maximum plaque thickness were the independent clinical fac-

tors. Twenty-four features were used to build the radiomics signature. In the validation set, the
nomogram (area under the curve [AUC], 0.977; 95% CI, 0.899e0.999) performed better
(p¼0.017 and p¼0.031) than the clinical factor model (AUC, 0.862; 95% CI, 0.746e0.938) and
radiomics signature (AUC, 0.944; 95% CI, 0.850e0.987). In external test set, the nomogram
(AUC, 0.952; 95% CI, 0.884e0.987) and radiomics signature (AUC, 0.932; 95% CI, 0.857e0.975)
showed better discrimination capability (p¼0.002 and p¼0.037) than clinical factor model
(AUC, 0.818; 95% CI, 0.721e0.892).
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CONCLUSION: The CT-based nomogram showed satisfactory performance in identification of
high-risk plaques in carotid arteries, and it may serve as a potential non-invasive tool to
identify carotid plaque vulnerability and risk stratification.

� 2023 Published by Elsevier Ltd on behalf of The Royal College of Radiologists.
Introduction

Atherosclerotic plaque in the carotid artery is a main
reason for cerebrovascular disease.1,2 Nowadays, the global
prevalence of carotid atherosclerosis is gradually increasing,
which has attracted more attention and research.3 Based on
the utility of stenosis measurement alone to identify
ischaemic stroke patients at highest risk, recent studies on
medical imaging techniques have attempted to provide a
more detailed characterisation of vulnerable plaques.4,5

Although it is reliable and non-invasive, medical imaging is
complicated and requires specialised knowledge in identi-
fying various plaque characteristics. Therefore, the distinc-
tion between symptomatic and asymptomatic carotid plaque
remains a radiographic diagnostic challenge. Radiomics may
serve as a potential tool to improve the accuracy of diag-
nostic evaluation in identifying vulnerable carotid plaques.

Radiomics is a computational process that extracts and
analyses a great quantity of radiomic features from medical
images.6 It has been widely used and is of great value in
oncology, including tumour diagnosis, staging, grading, and
prognostic evaluation.7e9 Recently, it was reported that
computed tomography (CT) texture-based radiomics anal-
ysis has been employed to identify vulnerable plaques and
it may act as a novel risk-stratification tool in patients with
carotid atherosclerosis.10 Several studies have reported that
radiomics models using magnetic resonance imaging (MRI)
can accurately discriminate between symptomatic and
asymptomatic carotid plaques.11 Nevertheless, most studies
were focused on radiomics texture analysis, and more
radiomics studies with statistical characterisation are
required to provide more detailed plaque analysis. To the
authors’ knowledge, few relevant studies had been per-
formed to identify vulnerable carotid plaques using a CT-
based radiomics nomogram.

The purpose of this study was to develop and validate a
radiomics nomogram that would incorporate radiomics
signatures and clinical factors to identify high-risk carotid
plaques.
Materials and methods

All study procedures were approved by the institutional
review board, and informed consent was waived because of
the retrospective nature of the study. Consecutive patients
who underwent CT angiography (CTA) for suspected carotid
atherosclerotic disease from February 2019 to April 2021 at
The First Affiliated Hospital of Shandong First Medical
University were screened. One hundred and ninety-three
patients with symptomatic (n¼93, 74 men and 19
cation of vulnerable carotid p
women; mean age, 63.5 � 7.1 years) and asymptomatic
(n¼100, 62 men and 38 women; mean age, 64 � 8.8 years)
carotid plaques were enrolled in this study according to the
following inclusion criterion: extracranial carotid artery
stenosis secondary to atherosclerosis disease on CTA. The
exclusions criteria were as follows: (1) history of carotid
stenting and endarterectomy; (2) cardiac thrombus; (3)
carotid occlusion; (4) CTA images with poor quality; (5)
patients who had symptoms occurring in the both carotid
supplying territory. The patients were divided into training
and validation cohorts according to the proportion of 7:3 by
computer-generated random numbers. Eighty-seven pa-
tients with symptomatic (n¼48, 38 men and 10 women;
mean age, 62.8 � 7.5 years) and asymptomatic (n¼39, 27
men and 12 women; mean age, 63.4 � 8.6 years) carotid
plaques were enrolled as the external test set from another
hospital according to the same inclusion and exclusion
criteria. A flowchart for selecting the study population is
shown in Fig 1.

Patients were classified as symptomatic or asymptomatic
according to the neurological assessment.12 A symptomatic
patient was considered a patient with a stroke or transient
ischaemic attack (TIA) occurring in the carotid supplying
territory. Stroke was defined as permanent neurological
dysfunction by focal brain or retinal ischaemia.13 TIA was
defined as a transient episode of neurological dysfunction
by focal brain or retinal ischaemia.13 Patients were consid-
ered as asymptomatic if they had no cerebrovascular
symptoms in the past 6 months.

Demographic and clinical data including age, sex, body
mass index, hypertension, hyperlipidaemia, diabetes,
smoking, coronary artery disease, anti-hypertensive drug
use, statin use, and anti-platelet use were collected from
medical record.

CTA protocol

CTAwas performed using a third-generation dual-source
CT system (SOMATOM Force; Siemens Healthineers, Erlan-
gen, Germany). A 70e90 ml volume of contrast media
(Omnipaque-350; GE Healthcare, New Jersey, USA) was
injected using a power injector at a rate of 5e6 ml/s, fol-
lowed by 50 ml of saline flush. Acquisition was triggered
using bolus tracking after reaching an attenuation threshold
of 100 HU in the aortic arch for 5 seconds.

The carotid CTA parameters were as follows: tube voltage
of 110 kVp, pitch of 1.0, reconstructed section interval of 0.5
mm, reconstructed section thickness of 0.5mm and rotation
time of 400 ms. CTA studies were obtained in helical scan-
ning mode, and scanning extended from the aortic arch to
the cranial vertex.
laquewith CT-based radiomics nomogram, Clinical Radiology, https://



Figure 1 Flowchart of patients’ collection pathway.
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CTA image analysis

The measurements of CTA markers (presence of calcifi-
cation, maximum plaque thickness, and degree of luminal
stenosis) were obtained using post-processing workstation
(Syngo.via, Siemens, Germany). The degree of stenosis was
determined in accordance with the North American
Symptomatic Carotid Endarterectomy Trial (NASCET)
criteria on CTA.14 All CTA images were independently
assessed by two radiologists with more than 8 years’
experience in medical imaging, both of whomwere blinded
to patient clinical information and had any disagreements
in evaluation resolved by consensus.

Development of the clinical factor model

Univariable analysis was applied to compare the differ-
ences in the clinical factors (including clinical data and CTA
features) in the training, validation, and external test co-
horts. Then, a multivariable logistic regression analysis was
used to build the clinical factor model. Odds ratios (OR) as
estimates of relative risk with 95% confidence intervals (CIs)
were calculated for each independent factor.

Development of the radiomics signature and radiomics
nomogram

Plaque segmentation was performed on the CTA images
using ITK-SNAP software (version 3.7). The regions of in-
terests (ROIs) were segmented manually in the cross-
Please cite this article as: LiuM et al., Identification of vulnerable carotid p
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sectional area of the plaque. Contours were drawn within
the borders of the plaque, and care was taken not to include
the adjacent normal tissue. Feature extraction was per-
formed using the Radcloud platform (Huiying Medical
Technology, Beijing, China). A total of 234 radiomic features
were extracted from the medical imaging. The details of the
radiomic features are shown in Electronic Supplementary
Material Table S1. The inter- and intra-class correlation co-
efficients (ICCs) were used to evaluate the interobserver and
intraobserver reproducibility of feature extraction. CTA
images of 20 cases (seven symptomatic plaques and 13
asymptomatic plaques) were selected randomly to perform
ROI segmentation by radiologists 1 and 2. Radiologist 1
repeated the segmentation 3 weeks later to assess the
reproducibility of extraction. An ICC >0.75 indicates good
agreement of the feature extraction. Then the remaining
image segmentation was performed by radiologist 1.

To avoid dimensionality distortions and reduces biases of
radiomic features duringmodelling, dimension reduction of
the properties was conducted before signature construc-
tion. Briefly, the radiomic features with ICCs >0.75 were
underwent one-way analysis of variance (ANOVA) to choose
potential significant features. Then the select_k_best
method was performed to eliminate the redundant and
irrelevant features. The remaining features were then
included in a least absolute shrinkage and selection oper-
ator (LASSO) regression model to choose the most signifi-
cant characteristics in the training cohort. Then, the
selected features were applied to build a radiomics signa-
ture. A radiomics score (rad-score) was computed for all
laquewith CT-based radiomics nomogram, Clinical Radiology, https://



Figure 2 The overall workflow of the radiomics model development.
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patients using significant features selected by LASSO
coefficients.

A radiomics nomogramwas constructed by incorporating
the significant variables of the clinical factors and the rad-
score. The radiomics nomogram included the same fea-
tures of the radiomics signature. The goodness-of-fit of the
nomogram was evaluated using the HosmereLemeshow
test and calibration curves. The workflow of the develop-
ment of the radiomics model is displayed in Fig 2.

Assessment of the performance of different models

The diagnostic performance of the clinical factor model,
the radiomics model, and the radiomics nomogram model
for distinguishing symptomatic and asymptomatic carotid
plaques were assessed from the area under the curve (AUC)
of the receiver operator characteristic (ROC) curve in the
training, validation, and external test cohorts. To evaluate
the clinical value of the nomogram model, decision curve
analysis (DCA) was performed by calculating the net ben-
efits for a range of threshold probabilities in the training,
validation, and external test cohorts.

Statistical analysis

Continuous variables are described as mean � standard
deviation (SD), and categorical variables are presented as
percentages. Univariable analysis was used to compare dif-
ferences in the clinical factors between the two patient
groups, using independent samples t-tests for quantitative
data, and the chi-square or Fisher’s exact tests for qualitative
data, as appropriate. One-way ANOVA was performed to
compare with each radiomics signature for the differentia-
tion of symptomatic and asymptomatic carotid plaques. The
LASSO regression was applied using the “glmnet” package.
ROC curves were plotted using the “pROC” package. Dis-
tinctions in AUC values among different models were esti-
mated using the Delong test. Nomogram development and
calibration curves were performed using the “rms” package.
DCA was applied using the “rmda” package. The
HosmereLemeshow test was employed using the “general-
hoslem” package. Statistical significance was considered at
Please cite this article as: LiuM et al., Identification of vulnerable carotid p
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p<0.05. Statistical analysis was performed using SPSS
(version 22.0, IBM, Armonk, NY, USA) and R statistical soft-
ware (version 3.3.3, https://www.r-project.org).
Results

The clinical characteristics of the patients in the training,
validation, and external test sets are summarised in Table 1.
Sex, hyperlipidaemia, calcification, degree of luminal ste-
nosis, and maximum plaque thickness showed significant
differences in the training cohort (p<0.05). The multivari-
able logistic regression analysis suggested that only calci-
fication and maximum plaque thickness remained as
independent predictors. Compared with asymptomatic
patients, those symptomatic patients showed a higher
prevalence of calcification (OR, 58.26; 95% confidence in-
terval [CI], 4.17e815.60; p¼0.003) and greater maximum
plaque thickness (OR, 2.62; 95% CI, 1.47e4.68; p¼0.001).

Of the 234 radiomic features collected from the CTA
images, 221 had good inter- and intraobserver agreement,
with ICCs >0.75; 117 radiomic features showed significant
differences between symptomatic and asymptomatic ca-
rotid plaques by ANOVA. Among the 117 radiomic features,
93 stable radiomic features were retained by the
select_k_best method. These features were then used to
select the most valuable features by LASSO. Twenty-four
features were finally used to build the radiomics signa-
ture. According to these features, rad-score calculation is
shown in Electronic Supplementary Material Equation S1. A
significant distinction was found in the rad-score between
the symptomatic and asymptomatic groups in the training
set (0.30 � 0.24 versus e0.28 � 0.22; p<0.001), which was
then confirmed in the validation set (0.40 � 0.22 versus
e0.34 � 0.18; p<0.001), and the external test set
(0.31 � 0.22 versus e0.15 � 0.26; p<0.001).

The calcification, maximum plaque thickness, and rad-
score were incorporated into a radiomics nomogram
(Fig 3a). The radiomics nomogram has a good calibration
(Fig 3b). The HosmereLemeshow test and the calibration
curve showed good calibration in the training set (p>0.05),
validation set (p>0.05), and external test set (p>0.05).
laquewith CT-based radiomics nomogram, Clinical Radiology, https://
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Figure 3 The radiomics nomogram and calibration curves for the radiomics nomogram. (a) The radiomics nomogram, incorporating calcifi-
cation, maximum plaque thickness, and rad-score, developed in the training set. (b) Calibration curve indicates the goodness-fit of the
nomogram. The 45� dotted line represents an ideal prediction, and the other dotted line represents the predictive performance of the nomo-
gram. A closer distance between two lines indicates better prediction. The solid line indicates the deviation corrected.

Table 1
Clinical factors of the training, validation and external test sets.

Clinical factors Training set (n¼135) Validation set (n¼58) External test set (n¼87)

Symptomatic
group (n¼65)

Asymptomatic
group (n¼70)

p-
Value

Symptomatic
group (n¼28)

Asymptomatic
group (n¼30)

p-
Value

Symptomatic
group (n¼48)

Asymptomatic
group (n¼39)

p-
Value

Age, years 63.8 � 7.2 65.3 � 8.8 0.259 63 � 7.1 61 � 8.0 0.327 62.8 � 7.5 63.4 � 8.6 0.742
Sex, male 52 (80) 44 (62.9) 0.028 22 (78.6) 18 (60) 0.127 38 (79.2) 27 (69.2) 0.289
BMI, kg/m2 25.5 � 1.7 25.2 � 1.6 0.211 25.4 � 1.6 25.1 � 1.6 0.420 25.6 � 1.7 25.3 � 1.6 0.496
Hypertension 56 (86.2) 56 (80) 0.342 13 (46.4) 11 (36.7) 0.451 41 (85.4) 32 (82.1) 0.671
Hyperlipidaemia 32 (49.2) 216 (30) 0.022 22 (78.6) 25 (83.3) 0.644 22 (45.8) 10 (25.6) 0.052
Diabetes 26 (40) 23 (32.9) 0.388 9 (32.1) 11 (36.7) 0.717 21 (43.8) 9 (23.1) 0.044
Smoking 51 (78.5) 50 (71.4) 0.347 18 (64.3) 18 (60) 0.737 36 (75) 29 (74.4) 0.945
CAD 40 (61.5) 40 (57.1) 0.604 13 (46.4) 14 (46.7) 0.986 30 (62.5) 22 (56.4) 0.565
Antihypertension use 53 (81.5) 51 (72.9) 0.231 22 (78.6) 22 (73.3) 0.641 39 (81.3) 30 (76.9) 0.620
Statin use 51 (78.5) 48 (68.6) 0.194 22 (78.6) 19 (63.3) 0.203 39 (81.3) 23 (59) 0.022
Antiplatelet use 49 (75.4) 43 (61.4) 0.082 23 (82.1) 19 (63.3) 0.109 37 (77.1) 20 (51.3) 0.012
Calcification 64 (98.5) 56 (80) <0.001 27 (96.4) 23 (76.7) 0.029 47 (97.9) 30 (76.9) 0.002
Degree of luminal stenosis, % 44 � 17.3 31 � 11.7 <0.001 45.6 � 16.4 29 � 11.9 <0.001 44.7 � 17.3 33 � 10.4 <0.001
Maximum plaque thickness,

mm
3.9 � 1.2 2.8 � 0.8 <0.001 4.1 � 1.1 2.8 � 0.8 <0.001 3.9 � 1.2 2.9 � 0.9 <0.001

Continuous variables are described as mean � standard deviation (SD), and categorical variables are presented as numbers (%).
BMI indicates body mass index, and CAD coronary artery disease.

Table 2
Diagnostic performance of three models for identification of symptomatic plaque.

Set Model AUC (95% CI) Sensitivity Specificity Accuracy

Training set Clinical model 0.845 (0.773e0.902) 90.8% 60% 74.8%
Radiomics signature 0.976 (0.934e0.995) 92.3% 95.7% 94.1%
Radiomics nomogram 0.981 (0.941e0.997) 93.9% 94.3% 94.1%

Validation set Clinical model 0.862 (0.746e0.938) 60.7% 93.3% 77.6%
Radiomics signature 0.944 (0.850e0.987) 85.7% 86.7% 86.2%
Radiomics nomogram 0.977 (0.899e0.999) 96.4% 90% 93.1%

External test set Clinical model 0.818 (0.721e0.892) 52.1% 97.4% 72.4%
Radiomics signature 0.932 (0.857e0.975) 91.7% 89.7% 90.8%
Radiomics nomogram 0.952 (0.884e0.987) 97.9% 87.2% 93.1%

AUC indicates area under the curve; CI, confidence interval.
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The diagnostic performances of the clinical factor model,
radiomics signature model, and radiomics nomogram are
summarised in Table 2. The ROC curves of the three models
are shown in Fig 4 for the training, validation, and external
Please cite this article as: LiuM et al., Identification of vulnerable carotid p
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test cohorts. The nomogram (AUC, 0.981; 95% CI,
0.941e0.997) and radiomics signature (AUC, 0.976; 95% CI,
0.934e0.995) showed better discrimination capability
(p<0.001 and p<0.001) than the clinical factor model (AUC,
laquewith CT-based radiomics nomogram, Clinical Radiology, https://



Figure 4 The receiver operating characteristic (ROC) curves of the clinical factor model, the radiomics signature, and radiomics nomogram in the
(a) training, (b) validation, and (c) external test sets, respectively. The blue line, green line, and red line represent AUCs of the clinical factors, the
radiomics signature, and the radiomics nomogram, respectively.
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0.845; 95% CI, 0.773e0.902) in the training set. In the vali-
dation set, the nomogram (AUC, 0.977; 95% CI,
0.899e0.999) performed better (p¼0.017 and p¼0.031)
than the clinical factor model (AUC, 0.862; 95% CI,
0.746e0.938) and radiomics signature (AUC, 0.944; 95% CI,
0.850e0.987). In external test set, the nomogram (AUC,
0.952; 95% CI, 0.884e0.987) and radiomics signature (AUC,
0.932; 95% CI, 0.857e0.975) showed better discrimination
Figure 5 Decision curve analysis for three models. The y-axis rep-
resents the net benefit; x-axis represents threshold probability. The
blue line, green line, and red line indicate respectively net benefits of
the three models. The grey line indicates the hypothesis that all pa-
tients had symptomatic carotid plaques. The black line indicates the
hypothesis that no patients had symptomatic carotid plaques. The
decision curves show that the applying nomogram to predict symp-
tomatic carotid plaques increases more profit than the other two
models.

Please cite this article as: LiuM et al., Identification of vulnerable carotid p
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capability (p¼0.002 and p¼0.037) than clinical factor model
(AUC, 0.818; 95% CI, 0.721e0.892).

The DCA for the three models is shown in Fig 5. DCA
showed that the overall net benefit of the radiomics
nomogram in discriminating between symptomatic and
asymptomatic carotid plaques was higher than that of the
clinical factor model and radiomics signature across most
reasonable threshold probabilities.
Discussion

The present study developed and validated a CT-based
radiomics nomogram, which incorporates a radiomics
signature and clinical factors for identifying high-risk ca-
rotid plaques. The radiomics nomogram showed better
diagnostic performance than the clinical factor model and
radiomics signature, and may act as a potential non-
invasive tool to aid in the clinical diagnosis and treatment
decisions for vulnerable patients.

Accurate prediction of plaque vulnerability is significant
for selection of optimal therapeutic plan in patients with
carotid arteriosclerosis.15 Imaging plays a crucial role in
assessing plaque vulnerability in clinical practice. Several
studies have analysed the value of traditional CTA features
in the identification of vulnerable plaques. Gupta et al.16

showed that increasing maximum plaque thickness mea-
surements are associated with symptomatic disease status
in carotid artery stenosis, which is consistent with the
present study. Several researchers found that calcification
was often accompanied by intraplaque haemorrhage (IPH)
and then resulted in cerebrovascular symptoms.17 In the
present study, comparedwith asymptomatic patients, those
symptomatic patients showed a higher prevalence of
calcification; however, several studies have reported that
more carotid calcification was shown in asymptomatic pa-
tients with carotid plaques compared to symptomatic pa-
tients, supporting that calcificationwas a protective factor.18

Sample size, examination modality, and location of
laquewith CT-based radiomics nomogram, Clinical Radiology, https://
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calcification may be responsible for this discrepancy. In
present study, the clinical factor model based on calcifica-
tion and maximum plaque thickness did not achieve a high
AUC (0.845 in the training set; 0.862 in the validation set;
0.818 in the external test set). In addition, previous studies
have shown measurements of stenosis can be predictive of
future carotid symptoms.19 With the development of MRI
technology, several investigators have shown that compo-
sitional characteristics in carotid plaques, particularly IPH
and a lipid-rich necrotic core, play a key role in plaque
vulnerability4,5,20; however, assessing various plaque fea-
tures is a subjective task, and therefore, there were more
overestimated and underestimated cases. Therefore, it is
still challenging to identify vulnerable plaques in clinical
practice by routinely used imaging techniques. In the pre-
sent study, compared to the clinical factor model, the
radiomics models showed greater predictive power as
indicated by higher AUC values. Therefore, the radiomics
may be a useful approach to improve overall diagnostic
efficiency in identifying vulnerable plaques.

Radiomics is an emerging approach to extract quantita-
tive features to transform images into mineable data to
guide clinical decision-making.6,21 At present, research into
radiomics in cardiovascular imaging has fallen behind other
fields, such as oncology. There are increasing reports that
radiomics can be used in the diagnosis, prognosis, and
treatment of tumours.7e9 Several studies have also applied
radiomics to analyse plaque features to assess cerebrovas-
cular risk. Zaccagna et al.10 showed that CT texture analysis
parameters, in particular, skewness and standard deviation,
may serve as a novel risk stratification method for patients
with carotid atherosclerosis. Zhang et al.11 enrolled 108
patients with symptomatic plaques and 54 patients with
asymptomatic plaques to identify the significant MRI
radiomic features that can be applied to distinguish be-
tween symptomatic and asymptomatic carotid plaques. Shi
et al.22 reported that radiomic analysis of plaque texture on
MRI differentiated between symptomatic and asymptom-
atic plaques in the basilar artery, and combining clinical and
radiomics model achieved an AUC of 0.974 and accuracy of
90.5%. In addition, several studies have investigated
different types of texture analysis on carotid ultrasound
images and emphasised the predictive efficacy of radiomics
analysis in predicting future cerebrovascular diseases in
asymptomatic patients.23,24

Compared with previous artificial intelligence studies on
identifying symptomatic plaques, there are several differ-
ences and improvements in the present study. Firstly, a CT-
based radiomics nomogram was proposed by integrating
the radiomics model and clinical factor model, which
showed favourable predictive efficacy (AUCs of 0.981, 0.977
and 0.952 in the training, validation, and external test sets,
respectively) with good calibration. In addition, more net
benefits of the model for most threshold probabilities can
be derived from the DCA, implying that using our nomo-
gram to identify vulnerable carotid plaques would result in
better clinical outcomes. Secondly, three-dimensional ROI
analysis was performed in the present study. It is reported
that three-dimensional radiomics analysis appeared to
Please cite this article as: LiuM et al., Identification of vulnerable carotid p
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present more heterogeneity than two-dimensional ROI and
improved the discrimination accuracy.25,26 Thirdly, CTA is a
widely available imaging technique for the pretreatment
assessment of patients at risk.27,28 It offers significant ad-
vantages compared with MRI in terms of speed and avail-
ability, and it is far less operator-dependent than
ultrasound.29,30 Therefore, the choice of CTA for radiomics
analysis is significant and convenient for clinical applica-
tion. In addition, there were relatively more cases of
symptomatic plaques in the present study than those in
previous studies.

In the present study, 24 features were finally chosen for
use in the radiomics analysis. Among the characteristics
with a large proportion, “glrlm_RunEntropy” feature re-
flects the uncertainty/randomness of image information.6 A
higher value indicates more heterogeneity in the texture
patterns. The present study suggested that plaques with
mixed density and heterogeneous composition are more
prone to the represent symptomatic plaques. The “first-
order_Mean”, “firstorder_RootMeanSquared”, “first-
order_Range”, and “firstorder_Kurtosis” features reflect the
image pixel intensity and distribution characteristics within
the ROI.6 In the present study, these features reflect the
density and homogeneity of carotid plaque.

In addition, 280 individuals were analysed by segment-
ing the plaque, extracting radiomic features, and con-
structing the nomogram. For one individual, the time
required to segment the plaque, extract radiomic features,
and construct the nomogram is approximately 5, 3, and 1
min, respectively. Three-dimensional ROI segmentationwas
performed, which is complicated and time-consuming. The
diagnostic efficiency and fast duration will make radiomics
applications in clinic appealing.

Several limitations of the present study should be noted.
First, this is a retrospective study and cannot predict sub-
sequent ischaemic cerebrovascular events. Prospective
research using the radiomics nomogram for forecasting risk
stratification of carotid plaques is ongoing. Second, the
study had a small sample size, and a large-scale multicentre
study is required to further validate the nomogram. Third,
three-dimensional ROI segmentation is complicated and
time-consuming. An automatic segmentation method for
carotid plaques is needed in the future.

In conclusion, the present study presented a CT-based
nomogram that showed satisfactory performance in iden-
tifying high-risk plaques in carotid arteries. The radiomics
nomogram may act as a non-invasive and potential tool to
identify carotid plaque vulnerability and risk stratification.
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